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Covariate imbalance in randomized experiments

PROBLEM 1:

Small experiments:

Non-negligible probability of bad covariate balance between treatment
groups—a treatment group has too many Republicans, very sick
people, etc.

Bad imbalance on important covariates → Inaccurate estimates of
treatment effects.

Must prevent if cost of additional units is large (e.g. a medical trial).
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Blocking for massive experiments

PROBLEM 2:

Massive experiments with multiple treatment arms:

Currently, no efficient blocking method with guaranteed performance
that forms blocks with more than two units.

In matched-pairs, non-bipartite matching may STILL be too slow.

Needed when treatment effect sizes are very small (e.g. online
advertising) or when subgroups of interest.
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Post-randomization solutions to covariate imbalance

Post-stratification [Miratrix et al., 2013]:

After running the experiment, group similar units together to increase
precision of treatment effect estimates.

Data mining, p-hacking concerns.
Not as efficient as blocking (not as much of an issue).

Re-randomization [Lock Morgan and Rubin, 2012]:

Analyze covariate balance after randomization. Repeat randomly
assigning treatments until covariate balance is “acceptable.”
Not valid if decision to re-randomize is made only after bad imbalance.
Standard errors calculated across only “valid” randomizations. Can be
hard to compute—even when initial balance is good!

Moral of the story: Fix these problems in the randomization scheme,
not adjust after.
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Solution

Our Solution: Threshold Blocking

Blocking—grouping units according to common traits (e.g. same
political party, similar health) before treatment is assigned.

Completely randomize with block, independently across blocks.

Threshold blocking—each block contains at least k units for some
prespecified threshold k .

Accommodates arbitrarily many treatment arms (and multiple
replications within each block)

Ensure good covariate balance in small experiments

Efficient enough for massive experiments (100 million units)
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Our approach: Mimimize the MWBC

We analyze the following blocking method:

1 Choose a measure of dissimilarity or distance (e.g. Mahalanobis,
standardized Euclidian) that is small when important covariates have
similar values:

Cost: value of this distance. Lower cost = better match.

2 Choose a threshold k for the minimum number of units to be
contained in a block.

3 Each block contains at least k units, and the the maximum distance
between any two units within a block—the maximum within-block
cost (MWBC)—is minimized.
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Blocking by minimizing the MWBC

Minimizing the MWBC: Ensures covariate balance in randomization.

Threshold k : Allows designs with multiple treatment categories,
multiple replications of treatments within a block; blocks can preserve
clustering in data.

“Good” blocking can be found very quickly: can be used in massive
experiments.
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A simple example:

Threshold k = 2. Distance = Mahalanobis distance.
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A simple example:

Threshold k = 2. Dissimilarity = Mahalanobis distance.
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Optimal blocking and approximately optimal blocking

For all blockings that contain at least k units with each block:

Let λ denote the smallest MWBC achievable by such a blocking—any
blocking that meets this bound is called an optimal blocking.

Finding optimal blocking is NP-hard—feasible to find in small
experiments, may not be in large experiments (Follows from
[Kirkpatrick and Hell, 1983]).

We show blocking with MWBC ≤ 4λ is constructable in O(kn) time
and space, outside of forming nearest neighbor graph

Find “good” blocking when number of units is small or massive.

Denote any such blocking as an approximately optimal blocking.
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Viewing experimental units as a graph

Extend ideas from Rosenbaum [1989] and Greevy et. al. [2004]:
Statistical blocking problems can be viewed as graph theory
partitioning problems.

Experimental units are vertices in a graph.

Edges signify that two units can be placed in the same block.

Edge costs are a measure of dissimilarity between pretreatment
covariates (e.g. Mahalanobis, Euclidian).

Use methods in graph theory to solve original blocking problem.
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Viewing experimental units as a graph: In pictures

Dissimilarity = Mahalanobis distance.
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Notation:

A graph G is defined by its vertex set V and its edge set E :
G = (V ,E ).

Vertices in V denoted by i ; n units → n vertices in V .

Edges in E are denoted by ij : at most n(n−1)
2 edges.

The cost of edge ij ∈ E is denoted by cij ≥ 0.
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Edge costs

We require costs to satisfy the triangle inequality: for any distinct
vertices i , j , k,

cij ≤ cik + ckj .

This holds if costs are distances, but other choices work too.

Small cost cij if units i and j have similar values for block covariates.
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Nearest neighbor subgraph

An edge ij is in the k–nearest neighbor subgraph if and only if

cij ≤ ci(k) or cji ≤ cj(k).

ci(k): kth–largest cost of edge connected to i .

Well studied—most solutions in O(n log n) time and O(n) space.

Depends on dimension of covariates, graph sparseness, and measure
of dissimilarity.
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Optimal blocking as a graph partitioning problem

A partition of V is a division of V into disjoint blocks of vertices
{V1,V2, . . . ,V`}.
Blocking of units ↔ Partition of a graph:
Two experimental units are in the same block of the blocking if
corresponding vertices are in the same block of the partition.

Approximately solve the bottleneck threshold blocking problem:

Find a partition {V ∗1 ,V ∗2 , . . . ,V ∗`∗} with |V ∗j | ≥ k and MWBC at
most 4λ.
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Approximate algorithm outline:

Construct a (k − 1)–nearest neighbor subgraph.

Select block seeds that are “just far enough apart.”

Grow from these block centers to obtain an approximately optimal
blocking.

Approach extends from Hochbaum and Shmoys [1986].
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Algorithm step-by-step: Find nearest neighbor graph

Construct a
(k − 1)–nearest-neighbors graph

Can show that edge costs are,
at most, λ.

k = 2
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Algorithm step-by-step: Find block centers

Find a set of vertices—block
seeds—such that:

There is no path of two edges
or less connecting any of the
vertices in the set.
For any vertex not in the set,
there is a path of two edges or
less that connects that vertex
to one in the set.

Any set works, but some choices
of seeds are better.

Takes O(kn) time.
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Algorithm step-by-step: Grow from block centers

Form blocks comprised of a
block seed and any vertices
adjacent to the seed.

The way we choose seeds (no
path of two edges connects two
seeds), these blocks will not
overlap.

By nearest neighbors, these
blocks contain at least k units.

Takes O(n) time.
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Algorithm step-by-step: Assign all unassigned vertices

For each unassigned vertex, find
its closest seed in the nearest
neighbor graph. Add that vertex
to the seed’s corresponding
block.

We choose seeds so that
unassigned vertices are at most
a path of two edges away from a
block seed.

Takes O(n) time.

Since steps are sequential, total
runtime is O(kn) outside of
nearest neighbor graph
construction.
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Our blocking

Our approximate algorithm came up with the following blocking:
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A simple example:

Threshold k = 2. Dissimilarity = Mahalanobis distance.
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Sketch of proof of approximate optimality

Algorithm is guaranteed to obtain a blocking with MWBC ≤ 4λ,
though does much better than that in practice.

Sketch of proof:

Each vertex is at most a path of two edges away from a block seed
=⇒
Worst case: two vertices i , j in the same block can be connected by a
path of four edges in the nearest neighbors graph:
Two from i to block seed, two from seed to j .

Worst case: there are vertices `1, `2, `3 that form a path of 4 edges
connecting i to j :

i`1, `1`2, `2`3, `3j (1)

Michael J. Higgins (Kansas State) Threshold Blocking Nov. 5, 2015



Sketch of proof of approximate optimality

Algorithm is guaranteed to obtain a blocking with MWBC ≤ 4λ,
though does much better than that in practice.

Sketch of proof:

Each vertex is at most a path of two edges away from a block seed
=⇒
Worst case: two vertices i , j in the same block can be connected by a
path of four edges in the nearest neighbors graph:
Two from i to block seed, two from seed to j .

Worst case: there are vertices `1, `2, `3 that form a path of 4 edges
connecting i to j :

i`1, `1`2, `2`3, `3j (1)

Michael J. Higgins (Kansas State) Threshold Blocking Nov. 5, 2015



Sketch of proof of approximate optimality

Algorithm is guaranteed to obtain a blocking with MWBC ≤ 4λ,
though does much better than that in practice.

Sketch of proof:

Each vertex is at most a path of two edges away from a block seed
=⇒
Worst case: two vertices i , j in the same block can be connected by a
path of four edges in the nearest neighbors graph:
Two from i to block seed, two from seed to j .

Worst case: there are vertices `1, `2, `3 that form a path of 4 edges
connecting i to j :

i`1, `1`2, `2`3, `3j (1)

Michael J. Higgins (Kansas State) Threshold Blocking Nov. 5, 2015



Sketch of proof

Each edge has cost at most λ =⇒
The corresponding edge costs satisfy:

ci`1 + c`1`2 + c`2`3 + c`3j ≤ 4λ.

Since, edge costs satisfy the triangle inequality:

cij ≤ ci`1 + c`1`2 + c`2`3 + c`3j ≤ 4λ.

That is, every edge joining two vertices within the same block has
cost ≤ 4λ.

Hence, MWBC of the approximately optimal blocking is ≤ 4λ.

QED
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Heuristic Improvements:

Some quick adjustments can improve performance of algorithm:

Use a directed nearest neighbor graph:

Improve sparseness =⇒ Smaller block sizes

Heuristics for improving selection of block seeds.

Subdivide blocks with more than 2k units

Local search (e.g. Kernighan–Lin)
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Results: Simulation study

Simulation study to compare our method to current methods.

Repeatedly simulate covariates x1, x2 ∼ Uniform(0, 10)

Compare our blocking method (with and without heuristic
improvements) when k = 2 to commonly used implementations of
greedy blocking and non-bipartite matching.

Sample sizes from 100 units to 100 million units: Our method with
improvements blocks 100 million units in about 17 minutes.
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Time and space comparison
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Results: Simulation study

We consider the response schedule:

yi = x1ix2i + εi , εi ∼ N(0, 1)

Compare our blocking method to implementations of greedy blocking
and non-bipartite matching, and estimates using complete
randomization.

Elaborate simulation study currently in progress.
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Results: RMSE

Method 102 103 104

Approximation algorithm 1.000 1.000 1.000

Improvements 0.931 0.960 0.992

Fixed greedy 1.609 1.598 1.152

Threshold greedy 1.207 1.146 1.041

Non-bipartite matching 0.952 0.949 0.983

Unadjusted 6.092 15.158 20.710

OLS adjustment 2.352 5.776 7.900

Table: RMSE relative to approximation algorithm by sample size
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Future Work

Extend method to other statistical problems

Post-stratification—alternative to coarsened exact matching.
Clustering—alternative to k-means.

Algorithm improvements:

Decrease runtime and improve performance of the algorithm.
Under what circumstances can factor of 4 be improved?

Software coming soon.
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Thank you.
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Bottleneck subgraph: In pictures

B3(G ): Bottleneck subgraph of weight 3
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Estimating treatment effects: Notation

Recall, there are n units and r treatment categories.

There are b blocks, with nc units within each block c = 1, . . . , b.

Units within each block are ordered in some way, let (k , c) denote the
kth unit in block c .

For tractability:

Assume treatment assignment is balanced within each block: Each
treatment is replicated the same number of times (up to remainder).

Assume r divides each nc .
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Neyman-Rubin potential outcomes model

We assume responses follow the Neyman-Rubin potential outcomes
model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

Ykc = ykc1Tkc1 + ykc2Tkc2 + . . .+ ykcrTkcr .

Frequently used in causal inference.

Tkcs denotes a treatment indicator: Tkcs = 1 if unit (k , c) receives
treatment s; otherwise, Tkcs = 0.

ykcs denotes the potential outcome for unit (k, c) under treatment
s—the response of (k , c) we would observe had that unit received
treatment s. Potential outcomes are non-random, and ykcs is
unknown unless unit (k , c) receives treatment s.

Ykc denotes the observed response of (k , c). Randomness of Ykc due
entirely to randomness in treatment assignment.
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Neyman-Rubin potential outcomes model

We assume responses follow the Neyman-Rubin potential outcomes
model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

Ykc = ykc1Tkc1 + ykc2Tkc2 + . . .+ ykcrTkcr .

Example:

Medical trial: Suppose testing a experimental procedure that may
improve health outcomes.

Tkc1,Tkc2: Indicates whether the patient receives/does not recieve
the procedure.

ykc1, ykc2: Whether the patient is alive five years from today if the
patient receives/does not recieve the procedure.

Ykc : Whether the patient is alive five years from today.
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Neyman-Rubin potential outcomes model

We assume responses follow the Neyman-Rubin potential outcomes
model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

Ykc = ykc1Tkc1 + ykc2Tkc2 + . . .+ ykcrTkcr .

Model makes the stable-unit treatment value assumption (SUTVA):
the observed Ykc only depends on which treatment is assigned to unit
(k, c), and is not affected by the treatment assignment of any other
unit (k ′, c ′).
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Parameter of interest and estimators

Parameter of interest: Sample average treatment effect of treatment s
relative to treatment t (SATEst):

SATEst =
b∑

c=1

nc∑
k=1

ykcs − ykct
n

Two unbiased estimators of SATEst are the difference-in-means estimator
and the the Horvitz-Thompson estimator.

δ̂st,diff ≡
b∑

c=1

nc
n

nc∑
k=1

(
ykcsTkcs

#Tcs
− ykctTkct

#Tct

)
,

δ̂st,HT ≡
b∑

c=1

nc
n

nc∑
k=1

(
ykcsTkcs

nc/r
− ykctTkct

nc/r

)
.

These estimators are the same when treatment assignment is balanced and r

divides each nc .
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Variance of estimators

Var(δ̂st,diff) = Var(δ̂st,HT)

=
b∑

c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)

µcs =
1

nc

nc∑
k=1

ykcs

σ2
cs =

1

nc

nc∑
k=1

(ykcs − µcs)2

γcst =
1

nc

nc∑
k=1

(ykcs − µcs)(ykct − µct)

Small differences in formulas for more general treatment assignments.
Diff-in-means tends to have smaller variance when block sizes are small.
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Variance of estimators

Var(δ̂st,diff) = Var(δ̂st,HT)

=
b∑

c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)

Note: σ2
cs and σ2

ct are estimable, γcst not directly estimable.

Conservative estimate:

V̂ar =
b∑

c=1

n2
c

n2

(
r

nc − 1
(σ̂2

cs + σ̂2
ct)

)
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Variance of estimators

Var(δ̂st,diff) = Var(δ̂st,HT)

=
b∑

c=1

n2
c

n2

(
r − 1

nc − 1
(σ2

cs + σ2
ct) + 2

γcst
nc − 1

)

Note: σ2
cs and σ2

ct are estimable, γcst not directly estimable.

Conservative estimate:

V̂ar =
b∑

c=1

n2
c

n2

(
r

nc − 1
(σ̂2

cs + σ̂2
ct)

)
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When does blocking help?

Blocking vs. completely randomized treatment assignment (no
blocking): which estimates of SATEst have lower variance?

Can show that blocking helps if and only if:

∑b
c=1 n2

c

[(
(r − 1)(σ2

s + σ2
t ) + 2γst∑

n2
c(n − 1)

)
−
(

(r − 1)(σ2
cs + σ2

ct) + 2γcst
n2(nc − 1)

)]
≥ 0

Intuitive to make block-level variances small w.r.t. domain-level
variances, but other blocking designs may also improve treatment
effect estimates.
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Can blocking hurt?

When assignments of units to blocks completely randomized:

E

[
b∑

c=1

n2
c

(
(r − 1)(σ2

cs + σ2
ct) + 2γcst

n2(nc − 1)

)]

=
b∑

c=1

n2
c

(
(r − 1)(σ2

s + σ2
t ) + 2γst∑

n2
c(n − 1)

)
Expected variance when blocking = Completely randomized variance

Blocking better than “at random” → Reduced variance in treatment
effect estimates.
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Results: A toy example

Consider the following toy example:

“Health score” is a variable that is well-known to be affected by a
person’s height and weight.

Scientists claim that taking a vitamin will improve the health score.

Unbeknownst to the researchers, the true relationship between height,
weight, and vitamin intake on health score is:

Health scorei = 3(heighti ) + weighti + 1.5
√

(heighti )(weighti )

+50(takeVitamini )
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Results: A toy example

Suppose the scientists are able
to perform an experiment on 12
subjects to determine the effect
of the vitamin.

We analyze results of this
experiment when blocking on
height and weight using our
blocking method (t∗ = 2,
Mahalanobis distance) and when
completely randomizing
treatment.

Compare both covariate balance
and precision of treatment effect
estimates.
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Covariate balance: Height

Histogram of height for completely randomized treatment
SD = 1.36
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Covariate balance: Weight

Histogram of weight for completely randomized treatment
SD = 12.82
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Comparison of estimates

Treatment effect estimates for
completely randomized treatment: SD = 19.94

Treatment effect estimates
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Results: Comparison of estimates

For this toy example, our
blocking method dramatically
reduces the potential for large
covariate imbalance.

Blocking yields a much more
precise estimate of the
treatment effect.

Treatment effect estimates for
completely randomized treatment: SD = 19.94
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