Improving Massive Experiments using Threshold Blocking: Minimizing the Within-Block Distance

Michael J. Higgins

Kansas State University

Nov. 5, 2015

Work with Fredrik Savje and Jasjeet Sekhon

- Motivation
- Blocking and graph theory
- 3 Approximately optimal blocking algorithm
- 4 Results
- 5 Future work

Covariate imbalance in randomized experiments

PROBLEM 1:

- Small experiments:
- Non-negligible probability of bad covariate balance between treatment groups—a treatment group has too many Republicans, very sick people, etc.
- ullet Bad imbalance on important covariates o Inaccurate estimates of treatment effects.
- Must prevent if cost of additional units is large (e.g. a medical trial).

Blocking for massive experiments

PROBLEM 2:

- Massive experiments with multiple treatment arms:
- Currently, no efficient blocking method with guaranteed performance that forms blocks with more than two units.
- In matched-pairs, non-bipartite matching may STILL be too slow.
- Needed when treatment effect sizes are very small (e.g. online advertising) or when subgroups of interest.

- Post-stratification [Miratrix et al., 2013]:
 - After running the experiment, group similar units together to increase precision of treatment effect estimates.

- Post-stratification [Miratrix et al., 2013]:
 - After running the experiment, group similar units together to increase precision of treatment effect estimates.
 - Data mining, p-hacking concerns.
 - Not as efficient as blocking (not as much of an issue).

- Post-stratification [Miratrix et al., 2013]:
 - After running the experiment, group similar units together to increase precision of treatment effect estimates.
 - Data mining, *p*-hacking concerns.
 - Not as efficient as blocking (not as much of an issue).
- Re-randomization [Lock Morgan and Rubin, 2012]:
 - Analyze covariate balance after randomization. Repeat randomly assigning treatments until covariate balance is "acceptable."

- Post-stratification [Miratrix et al., 2013]:
 - After running the experiment, group similar units together to increase precision of treatment effect estimates.
 - Data mining, p-hacking concerns.
 - Not as efficient as blocking (not as much of an issue).
- Re-randomization [Lock Morgan and Rubin, 2012]:
 - Analyze covariate balance after randomization. Repeat randomly assigning treatments until covariate balance is "acceptable."
 - Not valid if decision to re-randomize is made only after bad imbalance.
 - Standard errors calculated across only "valid" randomizations. Can be hard to compute—even when initial balance is good!

- Post-stratification [Miratrix et al., 2013]:
 - After running the experiment, group similar units together to increase precision of treatment effect estimates.
 - Data mining, p-hacking concerns.
 - Not as efficient as blocking (not as much of an issue).
- Re-randomization [Lock Morgan and Rubin, 2012]:
 - Analyze covariate balance after randomization. Repeat randomly assigning treatments until covariate balance is "acceptable."
 - Not valid if decision to re-randomize is made only after bad imbalance.
 - Standard errors calculated across only "valid" randomizations. Can be hard to compute—even when initial balance is good!
- Moral of the story: Fix these problems in the randomization scheme, not adjust after.

Solution

Our Solution: Threshold Blocking

- Blocking—grouping units according to common traits (e.g. same political party, similar health) before treatment is assigned.
 - Completely randomize with block, independently across blocks.
- Threshold blocking—each block contains at least k units for some prespecified threshold k.

Solution

Our Solution: Threshold Blocking

- Blocking—grouping units according to common traits (e.g. same political party, similar health) before treatment is assigned.
 - Completely randomize with block, independently across blocks.
- Threshold blocking—each block contains at least k units for some prespecified threshold k.
- Accommodates arbitrarily many treatment arms (and multiple replications within each block)
- Ensure good covariate balance in small experiments
- Efficient enough for massive experiments (100 million units)

Our approach: Mimimize the MWBC

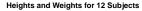
We analyze the following blocking method:

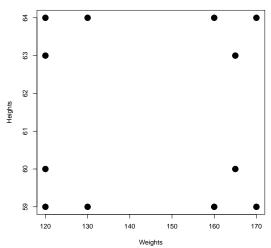
- Choose a measure of dissimilarity or distance (e.g. Mahalanobis, standardized Euclidian) that is small when important covariates have similar values:
 - Cost: value of this distance. Lower cost = better match.
- ② Choose a threshold *k* for the minimum number of units to be contained in a block.
- Each block contains at least k units, and the the maximum distance between any two units within a block—the maximum within-block cost (MWBC)—is minimized.

Blocking by minimizing the MWBC

- Minimizing the MWBC: Ensures covariate balance in randomization.
- Threshold k: Allows designs with multiple treatment categories, multiple replications of treatments within a block; blocks can preserve clustering in data.
- "Good" blocking can be found very quickly: can be used in massive experiments.

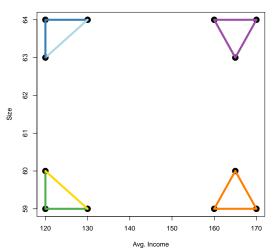
Threshold k = 2. Distance = Mahalanobis distance.





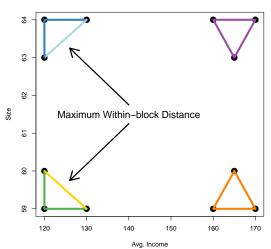
Threshold k = 2. Distance = Mahalanobis distance.

Minimize Maximum Within-Block Distance

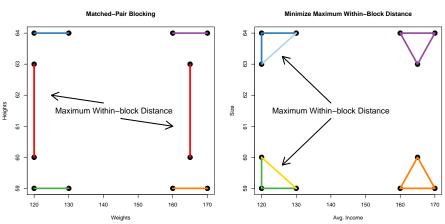


Threshold k = 2. Distance = Mahalanobis distance.

Minimize Maximum Within-Block Distance



Threshold k = 2. Dissimilarity = Mahalanobis distance.



Optimal blocking and approximately optimal blocking

For all blockings that contain at least k units with each block:

- Let λ denote the smallest MWBC achievable by such a blocking—any blocking that meets this bound is called an *optimal blocking*.
- Finding optimal blocking is NP-hard—feasible to find in small experiments, may not be in large experiments (Follows from [Kirkpatrick and Hell, 1983]).

Optimal blocking and approximately optimal blocking

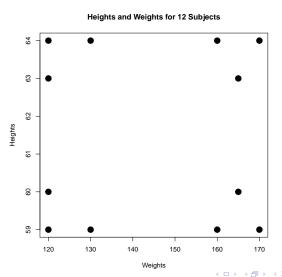
For all blockings that contain at least k units with each block:

- Let λ denote the smallest MWBC achievable by such a blocking—any blocking that meets this bound is called an *optimal blocking*.
- Finding optimal blocking is NP-hard—feasible to find in small experiments, may not be in large experiments (Follows from [Kirkpatrick and Hell, 1983]).
- We show blocking with MWBC $\leq 4\lambda$ is constructable in O(kn) time and space, outside of forming nearest neighbor graph Find "good" blocking when number of units is small *or massive*.
- Denote any such blocking as an approximately optimal blocking.

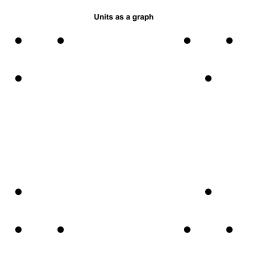
Viewing experimental units as a graph

- Extend ideas from Rosenbaum [1989] and Greevy et. al. [2004]: Statistical blocking problems can be viewed as graph theory partitioning problems.
- Experimental units are vertices in a graph.
- Edges signify that two units can be placed in the same block.
- Edge costs are a measure of dissimilarity between pretreatment covariates (e.g. Mahalanobis, Euclidian).
- Use methods in graph theory to solve original blocking problem.

Dissimilarity = Mahalanobis distance.

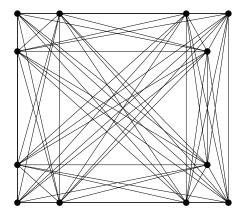


 $Dissimilarity = Mahalanobis\ distance.$



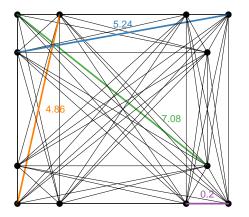
Dissimilarity = Mahalanobis distance.

Units as a graph



Dissimilarity = Mahalanobis distance.

Units as a graph



Notation:

- A graph G is defined by its vertex set V and its edge set E: G = (V, E).
- Vertices in V denoted by i; n units $\rightarrow n$ vertices in V.
- Edges in E are denoted by ij: at most $\frac{n(n-1)}{2}$ edges.
- The cost of edge $ij \in E$ is denoted by $c_{ij} \ge 0$.

Edge costs

• We require costs to satisfy the triangle inequality: for any distinct vertices i, j, k,

$$c_{ij} \leq c_{ik} + c_{kj}$$
.

- This holds if costs are distances, but other choices work too.
- Small cost c_{ij} if units i and j have similar values for block covariates.

Nearest neighbor subgraph

ullet An edge ij is in the k-nearest neighbor subgraph if and only if

$$c_{ij} \leq c_{i(k)}$$
 or $c_{ji} \leq c_{j(k)}$.

- $c_{i(k)}$: k^{th} -largest cost of edge connected to i.
- Well studied—most solutions in $O(n \log n)$ time and O(n) space. Depends on dimension of covariates, graph sparseness, and measure of dissimilarity.

Optimal blocking as a graph partitioning problem

- A partition of V is a division of V into disjoint blocks of vertices $\{V_1, V_2, \dots, V_\ell\}$.
- Blocking of units ↔ Partition of a graph:
 Two experimental units are in the same block of the blocking if corresponding vertices are in the same block of the partition.

Optimal blocking as a graph partitioning problem

- A partition of V is a division of V into disjoint blocks of vertices $\{V_1, V_2, \dots, V_\ell\}$.
- Blocking of units
 Or Partition of a graph:
 Two experimental units are in the same block of the blocking if corresponding vertices are in the same block of the partition.
- Approximately solve the bottleneck threshold blocking problem: Find a partition $\{V_1^*, V_2^*, \dots, V_{\ell^*}^*\}$ with $|V_j^*| \ge k$ and MWBC at most 4λ .

Approximate algorithm outline:

- Construct a (k-1)-nearest neighbor subgraph.
- Select block seeds that are "just far enough apart."
- Grow from these block centers to obtain an approximately optimal blocking.
- Approach extends from Hochbaum and Shmoys [1986].

Algorithm step-by-step: Find nearest neighbor graph

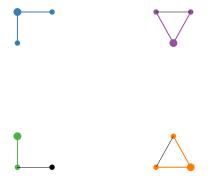
- Construct a (k-1)-nearest-neighbors graph
- Can show that edge costs are, at most, λ .

Algorithm step-by-step: Find block centers

- Find a set of vertices—block seeds—such that:
 - There is no path of two edges or less connecting any of the vertices in the set.
 - For any vertex not in the set, there is a path of two edges or less that connects that vertex to one in the set.
- Any set works, but some choices of seeds are better.
- Takes O(kn) time.

Algorithm step-by-step: Grow from block centers

- Form blocks comprised of a block seed and any vertices adjacent to the seed.
- The way we choose seeds (no path of two edges connects two seeds), these blocks will not overlap.
- By nearest neighbors, these blocks contain at least k units.
- Takes O(n) time.

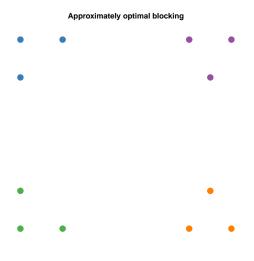


Algorithm step-by-step: Assign all unassigned vertices

- For each unassigned vertex, find its closest seed in the nearest neighbor graph. Add that vertex to the seed's corresponding block.
- We choose seeds so that unassigned vertices are at most a path of two edges away from a block seed.
- Takes O(n) time.
- Since steps are sequential, total runtime is O(kn) outside of nearest neighbor graph construction.

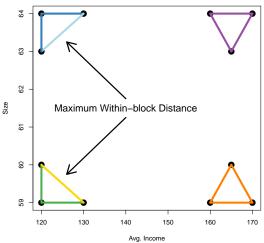
Our blocking

Our approximate algorithm came up with the following blocking:



Threshold k = 2. Dissimilarity = Mahalanobis distance.

Minimize Maximum Within-Block Distance



Sketch of proof of approximate optimality

• Algorithm is guaranteed to obtain a blocking with MWBC \leq 4 λ , though does much better than that in practice.

Sketch of proof of approximate optimality

- Algorithm is guaranteed to obtain a blocking with MWBC $\leq 4\lambda$, though does much better than that in practice.
- Sketch of proof:
- Each vertex is at most a path of two edges away from a block seed
 ⇒

Worst case: two vertices i, j in the same block can be connected by a path of four edges in the nearest neighbors graph:

Two from i to block seed, two from seed to j.

Sketch of proof of approximate optimality

- Algorithm is guaranteed to obtain a blocking with MWBC $\leq 4\lambda$, though does much better than that in practice.
- Sketch of proof:
- Each vertex is at most a path of two edges away from a block seed
 ⇒

Worst case: two vertices i,j in the same block can be connected by a path of four edges in the nearest neighbors graph:

Two from i to block seed, two from seed to j.

• Worst case: there are vertices ℓ_1, ℓ_2, ℓ_3 that form a path of 4 edges connecting i to j:

$$i\ell_1, \ \ell_1\ell_2, \ \ell_2\ell_3, \ \ell_3j \tag{1}$$

Sketch of proof

• Each edge has cost at most $\lambda \implies$ The corresponding edge costs satisfy:

$$c_{i\ell_1}+c_{\ell_1\ell_2}+c_{\ell_2\ell_3}+c_{\ell_3j}\leq 4\lambda.$$

Sketch of proof

• Each edge has cost at most $\lambda \implies$ The corresponding edge costs satisfy:

$$c_{i\ell_1} + c_{\ell_1\ell_2} + c_{\ell_2\ell_3} + c_{\ell_3j} \leq 4\lambda.$$

Since, edge costs satisfy the triangle inequality:

$$c_{ij} \leq c_{i\ell_1} + c_{\ell_1\ell_2} + c_{\ell_2\ell_3} + c_{\ell_3j} \leq 4\lambda.$$

- That is, every edge joining two vertices within the same block has $\cos t < 4\lambda$.
- Hence, MWBC of the approximately optimal blocking is $\leq 4\lambda$.
- QED

Heuristic Improvements:

Some quick adjustments can improve performance of algorithm:

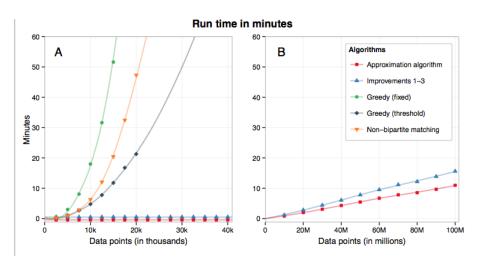
- Use a directed nearest neighbor graph:
 Improve sparseness ⇒ Smaller block sizes
- Heuristics for improving selection of block seeds.
- Subdivide blocks with more than 2k units
- Local search (e.g. Kernighan–Lin)

Results: Simulation study

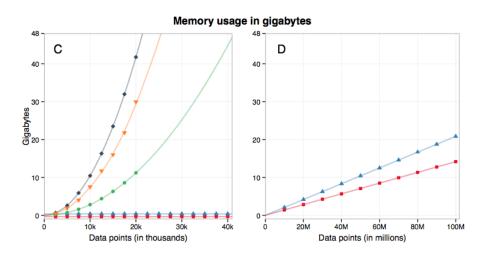
Simulation study to compare our method to current methods.

- Repeatedly simulate covariates $x_1, x_2 \sim \textit{Uniform}(0, 10)$
- Compare our blocking method (with and without heuristic improvements) when k=2 to commonly used implementations of greedy blocking and non-bipartite matching.
- Sample sizes from 100 units to 100 million units: Our method with improvements blocks 100 million units in about 17 minutes.

Time and space comparison



Time and space comparison



Results: Simulation study

• We consider the response schedule:

$$y_i = x_{1i}x_{2i} + \epsilon_i, \quad \epsilon_i \sim N(0,1)$$

- Compare our blocking method to implementations of greedy blocking and non-bipartite matching, and estimates using complete randomization.
- Elaborate simulation study currently in progress.

Results: RMSE

Method	10^{2}	10^{3}	10^{4}
Approximation algorithm	1.000	1.000	1.000
Improvements	0.931	0.960	0.992
Fixed greedy	1.609	1.598	1.152
Threshold greedy	1.207	1.146	1.041
Non-bipartite matching	0.952	0.949	0.983
Unadjusted	6.092	15.158	20.710
OLS adjustment	2.352	5.776	7.900

Table: RMSE relative to approximation algorithm by sample size

Future Work

- Extend method to other statistical problems
 - Post-stratification—alternative to coarsened exact matching.
 - Clustering—alternative to *k*-means.
- Algorithm improvements:
 - Decrease runtime and improve performance of the algorithm.
 - Under what circumstances can factor of 4 be improved?
- Software coming soon.

Bibliography I

- D.S. Hochbaum and D.B. Shmoys. A unified approach to approximation algorithms for bottleneck problems. <u>Journal of the ACM (JACM)</u>, 33 (3):533–550, 1986.
- Paul W Holland. Statistics and causal inference. <u>Journal of the American</u> statistical Association, 81(396):945–960, 1986.
- David G. Kirkpatrick and Pavol Hell. On the complexity of general graph factor problems. SIAM Journal on Computing, 12(3):601–609, 1983.
- Kari Lock Morgan and Donald B Rubin. Rerandomization to improve covariate balance in experiments. <u>Annals of Statistics</u>, 40(2):1263–1282, 2012.
- Luke W. Miratrix, Jasjeet S. Sekhon, and Bin Yu. Adjusting treatment effect estimates by post-stratification in randomized experiments.

 <u>Journal of the Royal Statistical Society, Series B</u>, 75(2):369–396, 2013.

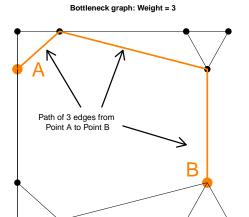
Bibliography II

- P.R. Rosenbaum. Optimal matching for observational studies. <u>Journal of</u> the American Statistical Association, 84(408):1024–1032, 1989.
- Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. <u>Journal of Educational Psychology</u>; <u>Journal of Educational Psychology</u>, 66(5):688, 1974.
- Jerzy Splawa-Neyman, DM Dabrowska, and TP Speed. On the application of probability theory to agricultural experiments. essay on principles. section 9. Statistical Science, 5(4):465–472, 1990.

Thank you.

Bottleneck subgraph: In pictures

 $B_3(G)$: Bottleneck subgraph of weight 3



Estimating treatment effects: Notation

- \bullet Recall, there are n units and r treatment categories.
- There are b blocks, with n_c units within each block c = 1, ..., b.
- Units within each block are ordered in some way, let (k, c) denote the kth unit in block c.

For tractability:

- Assume treatment assignment is balanced within each block: Each treatment is replicated the same number of times (up to remainder).
- Assume r divides each n_c .

 We assume responses follow the Neyman-Rubin potential outcomes model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

$$Y_{kc} = y_{kc1} T_{kc1} + y_{kc2} T_{kc2} + \ldots + y_{kcr} T_{kcr}.$$

Frequently used in causal inference.

 We assume responses follow the Neyman-Rubin potential outcomes model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

$$Y_{kc} = y_{kc1} T_{kc1} + y_{kc2} T_{kc2} + \ldots + y_{kcr} T_{kcr}.$$

- Frequently used in causal inference.
- T_{kcs} denotes a treatment indicator: $T_{kcs} = 1$ if unit (k, c) receives treatment s; otherwise, $T_{kcs} = 0$.
- y_{kcs} denotes the *potential outcome* for unit (k,c) under treatment s—the response of (k,c) we would observe had that unit received treatment s. Potential outcomes are non-random, and y_{kcs} is unknown unless unit (k,c) receives treatment s.
- Y_{kc} denotes the observed response of (k, c). Randomness of Y_{kc} due entirely to randomness in treatment assignment.

 We assume responses follow the Neyman-Rubin potential outcomes model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

$$Y_{kc} = y_{kc1}T_{kc1} + y_{kc2}T_{kc2} + \ldots + y_{kcr}T_{kcr}.$$

Example:

- Medical trial: Suppose testing a experimental procedure that may improve health outcomes.
- T_{kc1}, T_{kc2}: Indicates whether the patient receives/does not recieve the procedure.
- y_{kc1} , y_{kc2} : Whether the patient is alive five years from today if the patient receives/does not receive the procedure.
- Y_{kc} : Whether the patient is alive five years from today.

 We assume responses follow the Neyman-Rubin potential outcomes model [Splawa-Neyman et al., 1990, Rubin, 1974, Holland, 1986]:

$$Y_{kc} = y_{kc1}T_{kc1} + y_{kc2}T_{kc2} + \ldots + y_{kcr}T_{kcr}.$$

• Model makes the stable-unit treatment value assumption (SUTVA): the observed Y_{kc} only depends on which treatment is assigned to unit (k, c), and is not affected by the treatment assignment of any other unit (k', c').

Parameter of interest and estimators

 Parameter of interest: Sample average treatment effect of treatment s relative to treatment t (SATE_{st}):

$$SATE_{st} = \sum_{c=1}^{b} \sum_{k=1}^{n_c} \frac{y_{kcs} - y_{kct}}{n}$$

 Two unbiased estimators of SATE_{st} are the difference-in-means estimator and the Horvitz-Thompson estimator.

$$\hat{\delta}_{st,diff} \equiv \sum_{c=1}^{b} \frac{n_c}{n} \sum_{k=1}^{n_c} \left(\frac{y_{kcs} T_{kcs}}{\# T_{cs}} - \frac{y_{kct} T_{kct}}{\# T_{ct}} \right),$$

$$\hat{\delta}_{st, \text{HT}} \equiv \sum_{c=1}^{b} \frac{n_c}{n} \sum_{k=1}^{n_c} \left(\frac{y_{kcs} T_{kcs}}{n_c/r} - \frac{y_{kct} T_{kct}}{n_c/r} \right).$$

• These estimators are the same when treatment assignment is balanced and r divides each n_c .

Variance of estimators

$$\begin{aligned} & \text{Var}(\hat{\delta}_{st,\text{diff}}) = \text{Var}(\hat{\delta}_{st,\text{HT}}) \\ &= \sum_{c=1}^{b} \frac{n_{c}^{2}}{n^{2}} \left(\frac{r-1}{n_{c}-1} (\sigma_{cs}^{2} + \sigma_{ct}^{2}) + 2 \frac{\gamma_{cst}}{n_{c}-1} \right) \\ & \mu_{cs} &= \frac{1}{n_{c}} \sum_{k=1}^{n_{c}} y_{kcs} \\ & \sigma_{cs}^{2} &= \frac{1}{n_{c}} \sum_{k=1}^{n_{c}} (y_{kcs} - \mu_{cs})^{2} \\ & \gamma_{cst} &= \frac{1}{n_{c}} \sum_{k=1}^{n_{c}} (y_{kcs} - \mu_{cs}) (y_{kct} - \mu_{ct}) \end{aligned}$$

Small differences in formulas for more general treatment assignments. Diff-in-means tends to have smaller variance when block sizes are small.

Variance of estimators

$$\begin{aligned} & \mathsf{Var}(\hat{\delta}_{\mathsf{st},\mathsf{diff}}) = \mathsf{Var}(\hat{\delta}_{\mathsf{st},\mathsf{HT}}) \\ &= \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{r-1}{n_c-1} (\sigma_{cs}^2 + \sigma_{ct}^2) + 2 \frac{\gamma_{cst}}{n_c-1} \right) \end{aligned}$$

• Note: σ_{cs}^2 and σ_{ct}^2 are estimable, γ_{cst} not directly estimable.

Variance of estimators

$$\begin{aligned} & \mathsf{Var}(\hat{\delta}_{\mathsf{st},\mathsf{diff}}) = \mathsf{Var}(\hat{\delta}_{\mathsf{st},\mathsf{HT}}) \\ &= \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{r-1}{n_c-1} (\sigma_{\mathsf{cs}}^2 + \sigma_{\mathsf{ct}}^2) + 2 \frac{\gamma_{\mathsf{cst}}}{n_c-1} \right) \end{aligned}$$

- Note: σ_{cs}^2 and σ_{ct}^2 are estimable, γ_{cst} not directly estimable.
- Conservative estimate:

$$\widehat{\mathsf{Var}} = \sum_{c=1}^{b} \frac{n_c^2}{n^2} \left(\frac{r}{n_c - 1} (\hat{\sigma}_{cs}^2 + \hat{\sigma}_{ct}^2) \right)$$

When does blocking help?

- Blocking vs. completely randomized treatment assignment (no blocking): which estimates of SATE_{st} have lower variance?
- Can show that blocking helps if and only if:

$$\sum_{c=1}^{b} n_c^2 \left[\left(\frac{(r-1)(\sigma_s^2 + \sigma_t^2) + 2\gamma_{st}}{\sum n_c^2 (n-1)} \right) - \left(\frac{(r-1)(\sigma_{cs}^2 + \sigma_{ct}^2) + 2\gamma_{cst}}{n^2 (n_c - 1)} \right) \right] \ge 0$$

 Intuitive to make block-level variances small w.r.t. domain-level variances, but other blocking designs may also improve treatment effect estimates.

Can blocking hurt?

• When assignments of units to blocks completely randomized:

$$\mathbb{E}\left[\sum_{c=1}^{b} n_{c}^{2} \left(\frac{(r-1)(\sigma_{cs}^{2} + \sigma_{ct}^{2}) + 2\gamma_{cst}}{n^{2}(n_{c}-1)}\right)\right]$$

$$= \sum_{c=1}^{b} n_{c}^{2} \left(\frac{(r-1)(\sigma_{s}^{2} + \sigma_{t}^{2}) + 2\gamma_{st}}{\sum n_{c}^{2}(n-1)}\right)$$

Expected variance when blocking = Completely randomized variance

ullet Blocking better than "at random" o Reduced variance in treatment effect estimates.

Results: A toy example

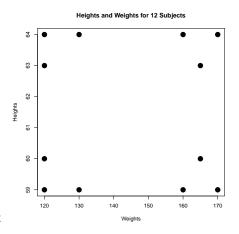
Consider the following toy example:

- "Health score" is a variable that is well-known to be affected by a person's height and weight.
- Scientists claim that taking a vitamin will improve the health score.
- Unbeknownst to the researchers, the true relationship between height, weight, and vitamin intake on health score is:

Health score_i =
$$3(\text{height}_i) + \text{weight}_i + 1.5\sqrt{(\text{height}_i)(\text{weight}_i)} + 50(\text{takeVitamin}_i)$$

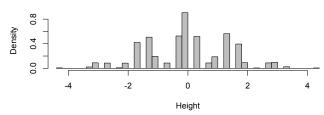
Results: A toy example

- Suppose the scientists are able to perform an experiment on 12 subjects to determine the effect of the vitamin.
- We analyze results of this experiment when blocking on height and weight using our blocking method (t* = 2, Mahalanobis distance) and when completely randomizing treatment.
- Compare both covariate balance and precision of treatment effect estimates.

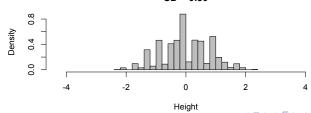


Covariate balance: Height

Histogram of height for completely randomized treatment SD = 1.36

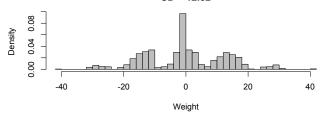


Histogram of height for block randomized treatment SD = 0.80

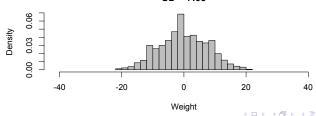


Covariate balance: Weight

Histogram of weight for completely randomized treatment SD = 12.82

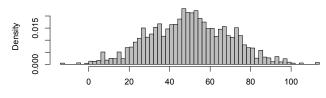


Histogram of weight for completely randomized treatment SD = 7.65



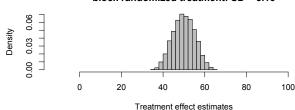
Comparison of estimates

Treatment effect estimates for completely randomized treatment: SD = 19.94



Treatment effect estimates

Diff-in-means treatment effect estimates for block randomized treatment: SD = 5.16



Results: Comparison of estimates

- For this toy example, our blocking method dramatically reduces the potential for large covariate imbalance.
- Blocking yields a much more precise estimate of the treatment effect.

