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a b s t r a c t

In this paper, we consider (mid-)rank based inferences for testing hypotheses in a fully
nonparametric marginal model for heteroscedastic functional data that contain a large
number of within subject measurements from possibly only a limited number of subjects.
The effects of several crossed factors and their interactions with time are considered. The
results are obtained by establishing asymptotic equivalence between the rank statistics
and their asymptotic rank transforms. The inference holds under the assumption of
α-mixing without moment assumptions. As a result, the proposed tests are applicable to
data from heavy-tailed or skewed distributions, including both continuous and ordered
categorical responses. Simulation results and a real application confirm that the (mid-)
rank procedures provide both robustness and increased power over the methods based
on original observations for non-normally distributed data.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Functional data in which a large number of within cluster measurements are collected temporally or spatially are
becoming more common as technology advances. An example is the tiling microarrays which use probes with partially
overlapping sequences to cover the entire genome. Another example comes from fast functional magnetic resonance
imaging data (fMRI) which contain measurements from the brain recorded at a time scale of seconds. We are interested
in the effect of several baseline or time-independent factors and their interactions with time. For the fMRI example, such
effects can help us to diagnose and determine how a normal, diseased or injured brain functions and to assess the potential
risks of invasive treatments of the brain.
Extensive studies have been done for functional data from various perspectives such as exploratory analysis by fixed

or mixed effects functional ANOVA models [1], smoothing spline models [2,3], and varying coefficient models [4–7]. A
Gaussian distribution was typically assumed for the models mentioned above or a large number of clusters or subjects
were available to estimate the inverse of the within cluster covariance matrix. Without these assumptions, the inference
faces major challenges such as nonconsistency due to a large number of nuisance parameters, difficulties to estimate large
unknown heteroscedastic covariance matrices using a limited number of subjects, as well as loss of power due to high
dimensionality. Since we would like to impose no restrictions on the distributions of data and the asymptotic setting of a
large number of within cluster measurements requires very different techniques from those assuming a large number of
independent clusters, we skip lengthy discussions and refer the reader to [8] for a discussion of some references.
To incorporate both numerical and ordinal functional data, Wang and Akritas [8] and Wang et al. [9] proposed

nonparametric test statistics based on original observations for evaluating the significance of fixed effects related to time
and treatment in heteroscedastic functional data, respectively. The test statistics in [9] are mainly quadratic forms with a
limitingχ2 distribution and those in [8] are based on a difference of two quadratic formswith a limiting normal distribution.
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The asymptotic distributions of their test statistics were both obtained under nonclassical asymptotics in the sense that the
number of within cluster measurements is large without requiring the number of subjects being large. Strong moment
conditions were assumed for validity of their inference. It is well known that inferences requiring higher order moment
conditions perform poorly for highly skewed or heavy-tailed data. Particularly, the moments do not exist for Cauchy
distribution.
Rank based inferences have the advantage of not requiring moment conditions or distributional assumptions. Rank tests

were available for some multivariate factorial designs. For example, Thompson [10,11] studied nonparametric tests based
on overall ranking of data from balanced one-factor design assuming continuous distributions. Akritas and Arnold [12] and
Akritas and Brunner [13] gave nonparametric tests using overall rankings of data from multivariate repeated measures
designs allowing both discrete and continuous data. Munzel and Brunner [14,15] proposed an approach using separate
rankings for different variables. The asymptotic results in these papers are under the classical asymptotic setting where the
sample size per treatment tends to infinity and the number of unknown effects remains fixed. For other rank results under
the classical setting, see [16,17] and the references therein. Recent papers by Harrar and Bathke [18] and Bathke and Harrar
[19] proposed several tests based on separate rankings of data when there are a large number of fixed effects and a small
number of correlated measurements and sample sizes. However, there are no rank results available for functional data in
the literature.
In this paper, we develop robust (mid-)rank based inference for hypothesis testing in functional data. We will formulate

the nonparametric main effect of treatment, time, and their interactions through the underlying unknown distributions.
The test statistics are constructed using rank transforms of those based on original observations. We will show that the
rank statistics are asymptotically equivalent to their counterpart based on asymptotic rank transforms defined through the
average cumulative distribution function under the asymptotic setting that the number of within cluster measurements is
large while the number of clusters per treatment may be small. The response variable in this paper can be measured on a
continuous or discrete ordinal scale since we work with the unknown distribution functions through (mid-)ranks. We do
not restrict the allowed pattern of heteroscedasticity and no specified parametric model is needed to describe the change
in the response distribution from one value to another. With the general setup and least assumptions, our theory applies
to a wide range of data including those from skewed or heavy-tailed distributions that are commonly seen in data from
high-throughput studies. Simulations and real data analysis provide additional supportive evidence to the proposed tests.
The rest of the paper is organized as follows. Section 2 describes the nonparametric model and hypotheses. In Section 3,

we state the main theoretical results about the test statistics and their asymptotic distributions. Analysis of real data and
simulation studies are presented in Section 4 followed by concluding remarks. The main technical arguments are given in
Appendix A and proofs of the supporting lemmas are given in Appendix B.

2. The nonparametric model and hypotheses

Consider subjects nested within a total of a factor levels such that each subject is measured at b time points t1, . . . , tb.
The kth subject in factor level i generates a time series Xik = (Xi1k, . . . , Xibk)′, i = 1, . . . , a, k = 1, . . . , ni. The a groups
can be factor level combinations of several factors and the individual effect can be recovered through contrast matrices. The
total number of subjects n =

∑a
i=1 ni can be large or small. Suppose Xijk have marginal distribution Fij(x) for all k = 1, . . . ni

for some unknown Fij(·).
We consider rank procedures that test hypothesis related to the distribution functions by decomposing Fij in a way

similar to the decomposition of the mean µij as in the parametric ANOVA model. They were first introduced by Akritas
and Arnold [12] as purely nonparametric hypotheses.

Fij(x) = M(x)+ Ai(x)+ Bj(x)+ Cij(x), (2.1)

where
∑a
i=1 Ai(x) =

∑b
j=1 Bj(x) =

∑a
i=1 Cij(x) =

∑b
j=1 Cij(x) = 0, ∀x. The functions Ai, Bj, Cij in (2.1) are the fully

nonparametric effects and the nonparametric hypotheses specify that the corresponding effects are zero. Specifically we
denote

H0(B) : all Bj = 0, H0(C) : all Cij = 0, H0(D) : all Dij = Ai + Cij = 0,

and H0(A) : all Ai = 0, or, more generally H̃0(A) : CF = 0, where F = (F 1., . . . , F a.)′,

where C is a contrastmatrixwith full row rank, and F i. = b−1
∑b
j=1 Fij(x). The null hypothesisH0(C)means that themarginal

distribution is a mixture of two components with equal mixture probability, one depending on the row factor, and the other
one depending on the column factor. The other hypotheses can be similarly interpreted. The fully nonparametric hypotheses
are stronger than the usual parametric hypotheses in the sense that the former one implies but are not implied by the latter.
To achieve weak convergence, it is necessary to control the correlation among observations. We assume that the time

series corresponding to different subjects are independent and each time series satisfies an α-mixing condition, i.e., assume
that for some sequence αm → 0 as m → ∞, |P(A ∩ B) − P(A)P(B)| ≤ αm holds for all A ∈ σ(Xi1k, . . . , Xi`k),
B ∈ σ(Xi,`+m,k, Xi,`+m+1,k, . . .), and all i, k, where σ(·) denotes the σ -field generated by the random variables. The α-mixing
condition basically requires the correlation between observations from the same subject to decay as the time lagm increases.
Billingsley [20] gave a central limit theory for strictly stationary α-mixing process. A few others considered nonstationary
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weak dependent processes (cf. [21] and the references therein). Herrndorf [21] gave conditions for weak convergence for α-
mixing short dependence processes allowing the mixing coefficient to approach 0 with a rate faster than O(m−1). However,
additional assumption E(S2b/b) → σ 2, for some σ 2, was assumed in [21], where Sb =

∑b
j=1 εj is the partial sum of an α-

mixing process {εj, j = 1, . . . , } (for ease of discussion on CLT, we focus on one process and drop the index i for treatment
and k for subject temporarily). This condition is not easy to verify without making further assumptions.
The decay rate αm = O(m−5)was assumed in [8] for residuals conditional on the random intercept and a CLT was given

for nonstationary α-mixing process under this rate without assuming the order of E(S2b/b). It is possible to relax the rate
for αm to include long range dependence processes but additional assumptions need to be imposed. For example, the result
of [22] gave a CLT allowing αm > m−1. The CLT stated that Sb/

√
kh(pb) is asymptotically normally distributed, where h(b)

is the order of E(S2b ) and pb satisfies four conditions: (1) k(pb + qb) = b; (2) pb, qb, k → ∞ and qb/pb → 0 as b → ∞;
(3) h(qb) = o(h(b)/k3); (4) k ≤ [− logαqb ]

1/2.
With these constraints, the order of kh(pb) is between b and b2 (not including the end points). Therefore, if this result

is applied to the test statistics based on original observations, the standardizing rate for the test statistics would then
be b/

√
kh(pb) = O(bβ) for some β < 1/2. That is, allowing slower rate for the mixing coefficient will lead to slower

convergence rate for the test statistics. [23] contain a few other results on long dependence processes though most of them
are for stationary or Gaussian processeswith the exception of some references studied linear processes (a linear combination
of iid random variables with zero mean and variance one). To allow heteroscedastic data and the parametric standardizing
rate, we follow the decay rate assumption αm = O(m−5) for nonstationary processes in this paper. Should slower rate for
the mixing coefficient is required and the convergence rate for the test statistics is not a concern, we refer to the references
above and [9] to extend the results. For simplicity, we impose the α-mixing condition directly on the observations and only
give a remark about how to proceed if the lagged correlations do not tend to zero as this is straightforward.

3. Rank tests

In this section we give the (mid-)rank based test statistics and their asymptotic distribution for the hypotheses stated in
Section 2.
(Mid-)Ranks can be expressed as a special transformation of the original observations. Specifically, let H(x) = N−1∑a
i=1
∑b
j=1 niFij(x) be the average distribution function, c(x, y) = [I(x < y) + I(x ≤ y)]/2, and Ĥ(x) = N−1

∑a
i=1∑b

j=1 nîFij(x), F̂ij(x) = n
−1
i
∑ni
k=1 c(Xijk, x), be its empirical version of the average distribution function. Then Rijk = 1/2 +

NĤ(Xijk) is the (mid-)rank of Xijk among all observations. Ĥ(Xijk) and H(Xijk) are referred as rank transforms and asymptotic
rank transforms (ART), respectively, as they relate the observations to their overall (mid-)ranks directly or asymptotically.
The concept of ART was first introduced in [24]. Rank transforms are not independent even when the original observations
are independent. On the contrary, the ART may inherit some good properties from the original data, such as correlation
structure. (Mid-)rank based tests typically involve showing the asymptotic equivalence between quadratic forms based on
rank transforms and their counterparts based on ART’s. This has been commonly adopted by many authors (cf. [24,12–15,
18,19] among others). The first five references show such equivalence under the large sample size setting, and the latter two
references show such equivalence under the small sample size but a large number of fixed effects setting. In this article, we
establish such equivalence under the functional data setting, i.e., a large number of within cluster measurements but with
possibly a small number of clusters.
For any transformation Yijk of Xijk, the following notations are used throughout the paper:

N = nb, ñ = min
1≤i≤a
{ni}, Y ij. =

1
ni

ni∑
k=1

Yijk, Ỹi.. = Y i.. =
1
b

b∑
j=1

Y ij., Y ... =
1
N

a∑
i=1

b∑
j=1

ni∑
k=1

Yijk,

Y i.k =
1
b

b∑
j=1

Yijk, Ỹ... =
1
ab

a∑
i=1

b∑
j=1

Y ij., Ỹ.j. =
1
a

a∑
i=1

Y ij., Y .j. =
1
n

a∑
i=1

ni∑
k=1

Yijk.

Let ASBR, ASCR, ASDR, ASER and ASED,R be the variations of the mean squares defined in (mid-)ranks as follows:

ASBR = a
b∑
j=1

(̃
R.j. − R̃...

)2
b− 1

, ASCR =
∑
i,j

(Rij. − R̃i.. − R̃.j. + R̃...)2

(a− 1)(b− 1)
, (3.1)

ASER =
∑
i,j

ni∑
k=1

(
Rijk − Rij. − Ri.k + R̃i..

)2
a(b− 1)ni(ni − 1)

, (3.2)

ASDR =
∑
i,j

(
Rij. − R̃.j.

)2
(a− 1)b

, ASED,R =
1
ab

∑
i,j,k

(Rijk − Rij.)2

ni(ni − 1)
. (3.3)

The statistics given above are the rank transform of the corresponding statistics based on the original observations in [8,9].
These mean squares are different from those used in traditional mixed effects models in that the un-weighted means are
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used and the summation over the subjects is removed from the sums of squares. In addition, the correspondingmean squares
for errors are adjusted to match the expectations under the heteroscedastic setting. Though bearing exactly the same form
as those based on original observations, however, the components under the summations are always correlated due to the
rankings used.
Define FR,B = ASBR/ASER, FR,C = ASCR/ASER and FR,D = ASDR/ASED,R. When there is only one treatment, i.e., a = 1, model

(2.1) is reduced to Fj(x) = M(x) + Bj(x). In this case, the only interest would be to evaluate the time effect of the single
treatment using FR,B that is still well defined through ASBR and ASER.
Set Yijk = H(Xijk), σ̃ijj′ = cov(Yijk, Yij′k), and σ̃ijj = σ̃ 2ij = Var(Yijk). Let σ̃

2
= limb→∞ E(ASER), and σ̃ 2∗ = limb→∞ E (̃nASER),

where

E(ASER) =
1

a(b− 1)

∑
i,j

σ̃ 2ij

ni
−

1
ab(b− 1)

a∑
i=1

b∑
j=1

b∑
j′=1

σ̃ijj′

ni
.

To obtain the asymptotic distribution of the rank tests, we need to establish the equivalence between the rank statistics
and their asymptotic rank transforms. Note that the latter are the test statistics evaluated atH(Xijk), for all i, j, k. SinceH(·) is
the average cumulative distribution function, it is bounded by one uniformly and therefore the strong moment assumption
on the original observations are automatically satisfied for H(Xijk). Further, the α-mixing property on {Xijk, j = 1, . . .} is
carried over to the process {H(Xijk), j = 1, . . .} by Theorem 5.2 of [25] about Borel functions of independent α-mixing
processes. We state it as a lemma here for convenience.
As multiple α-mixing sequences are involved in the lemma, the dependence coefficients αm will be denoted α(X,m) for

a given α-mixing sequence X = {Xj, j ∈ Z}, where Z is some index set.

Lemma 3.1. Suppose that for each i = 1, 2, 3, . . . ,X(i) = {X (i)j , j ∈ Z} is a (not necessarily stationary) sequence of
α-mixing random variables. Suppose these sequences X(i), i = 1, 2, 3, . . . are independent of each other. Suppose that for each
j ∈ Z, hj : R × R × R × · · · −→ R is a Borel function. Define the sequence U = {Uj, j ∈ Z} of random variables by
Uj = hj(X

(1)
j , X

(2)
j , X

(3)
j , . . .), j ∈ Z. Then for each m ≥ 1, α(U,m) ≤

∑
∞

i=1 α(X
(i),m).

Applying this lemma to H(x), a Borel function with a single argument, we know that {H(Xijk), j = 1, . . .} is an α-mixing
process with the same dependence coefficient αm as {Xijk, j = 1, . . .}, for each i, k. Then the results based on the original
observations can be applied to the asymptotic rank transforms. The next theorem gives the asymptotic distributions of the
test statistics.

Theorem 3.2. Assume for each subject in each group, {Xijk, j = 1, 2, . . . , } is α-mixing with αm = O
(
m−5

)
, i = 1, . . . , a,

k = 1, . . . , ni. Then as b→∞ while a remains bounded, the limits of

ζ̃1 =
2
a2b

b∑
j=1

b∑
j′=1

a∑
i=1

σ̃ 2ijj′

ni(ni − 1)
and ζ̃2 =

2
a2b

b∑
j=1

b∑
j′=1

a∑
i6=i′

σ̃ijj′ σ̃i′jj′

nini′
(3.4)

exist regardless of whether the ni stay bounded or go to∞. Further,

(1) if ni ≥ 2 are bounded, then

under H0(B),
√
b(FR,B − 1)

d
→ N

(
0, τ̃ 2B /σ̃

4)
;

under H0(C),
√
b(FR,C − 1)

d
→ N

(
0, τ̃ 2C /σ̃

4)
;

under H0(D),
√
b(FR,D − 1)

d
→ N

(
0, τ̃ 2C /σ̃

4)
;

where τ̃ 2B = limb→∞(̃ζ1 + ζ̃2) and τ̃
2
C = limb→∞

(
ζ̃1 + ζ̃2/(a− 1)2

)
.

(2) if ni →∞ as b→∞, assumemaxi{ni}/̃n = O(1). Then

under H0(B),
√
b(FR,B − 1)

d
→ N

(
0, τ̃ 2B∗/σ̃

4
∗

)
;

under H0(C),
√
b(FR,C − 1)

d
→ N

(
0, τ̃ 2C∗/σ̃

4
∗

)
;

under H0(D),
√
b(FR,D − 1)

d
→ N

(
0, τ̃ 2C∗/σ̃

4
∗

)
;

where τ̃ 2B∗ = limb→∞ ñ
2(̃ζ1 + ζ̃2) and τ̃ 2C∗ = limb→∞ ñ

2
(̃
ζ1 + ζ̃2/(a− 1)2

)
.

Remark 3.1. The convergence rate of the test statistics in Theorem 3.2 depends on the number of within subject
measurements b but not on the number of subjects ni. This is achieved since the ni in the numerator and denominator
of both the test statistics and the asymptotic variances have the same order.

In the proposition below, we give consistent estimators for ζ̃1 and ζ̃2.
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Proposition 3.3. Let ζ̃1 and ζ̃2 be as given in (3.4). Define C(j, h) = [min{b, j+ bh}] and C(j, h) = [max{0, j− bh}] for some
0 < h < 1, where [x] denotes the largest integer less than or equal to x. Set

ζ̂1 =
2
a2b

b∑
j=1

C(j,h)∑
j′=C(j,h)

a∑
i=1

ψ̂ijj′

ni(ni − 1)
, ζ̂2 =

2
a2b

b∑
j=1

C(j,h)∑
j′=C(j,h)

a∑
i6=i′

σ̂ijj′ σ̂i′jj′

nini′
,

where

ψ̂ijj′ =

ni∑
k1 6=k2 6=k3 6=k4

(Rijk1 − Rijk2)(Rij′k1 − Rij′k2)(Rijk3 − Rijk4)(Rij′k3 − Rij′k4)
4ni(ni − 1)(ni − 2)(ni − 3)

,

and

σ̂ijj′ =

ni∑
k=1

(Rijk − Rij.)(Rij′k − Rij′.)
ni − 1

.

Then as b → ∞, regardless of whether ni stay bounded or go to∞, ζ̂1/N4 − ζ̃1
p
→ 0 and ζ̂2/N4 − ζ̃2

p
→ 0, provided that

h < 1/2.

Remark 3.2. The diagnostics for the α-mixing condition is discussed in [8]. If the lagged correlations do not go to zero as
the lagged distance increases to∞, then a hidden random intercept effect may be contributing to the covariances. In such
case, the results for testing H0(B), H0(C) in Theorem 3.2 and Proposition 3.3 still hold if the α-mixing condition is assumed
on the residuals defined as the observationsminus their conditional mean given the random intercept. Correspondingly, the
estimators ψ̂ijj′ and σ̂ijj′ also need to be adjusted by replacing Rijk by Rijk−Ri.k. The test for H0(D) no longer holds in this case.
For testing of no group effect, the hypothesis involves only a small number of parameters but we need to handle a large

number of nuisance parameters from the unknown correlations. The result is stated below.

Theorem 3.4. Let WR = (R1.., . . . , Ra..)′. Assume {Xijk, j = 1, 2, . . . , } is α-mixing with αm = O
(
m−5

)
for all i, k. Let

η̂Ri =
n

bni(ni − 1)

b∑
j=1

C(j,h)∑
j′=C(j,h)

ni∑
k=1

(
Rijk − Rij.

) (
Rij′k − Rij′.

)
, i = 1, . . . , a,

where C(j, h), C(j, h) are given in Proposition 3.3. Then under H̃0(A), for a contrast matrix Ca with full row rank r,

NW′RC
′

a

[
Cadiag(η̂R1, . . . , η̂Ra)C′a

]−1 CaWR
d
→ χ2r , as b→∞,

regardless of whether the ni remain bounded or tend to∞, provided that maxi{ni}/̃n = O(1) and h < 1/2.
The proofs of Theorems 3.2 and 3.4 and Proposition 3.3 are given in Appendix A together with some supporting lemmas.

Remark 3.3. The use of C(j, h) and C(j, h) in Proposition 3.3 and Theorem 3.4 are important in that it not only is necessary
for the asymptotic convergence but also controls the amount of noises included in the test statistics. Without such control,
the estimators may accumulate too much noises.

4. Numerical study

In [8,9], their tests based on original observations (NPorg) showed superior performance in terms of both type I error
and power in simulations when comparedwith traditional tests including linear mixedmodels and generalized least square
methods with various covariance structures. These traditional tests failed to maintain type I error rate or exhibit low power
under local alternatives. In this section, we first examine how bh affects the behavior of the test statistics and then compare
the performance of the rank testwithNPorg and linearmixed effectsmodelwith a random intercept on skewed, heavy-tailed
and normally distributed data.
Note that the estimator for ζ̃1 requires the number of subjects to be at least four if we use unbiased estimator ψ̂ijj′

for σ 2ijj′ . Throughout this section when the number of subjects per treatment is less than four, we use a Jackknife bias
corrected estimator of σ 2ijj′ . The following notations are used in Sections 4.1 and 4.2: N(µ, σ ) denote normal distribution
with mean µ and standard deviation σ ; lognormal(µ, σ ) to denote lognormal distribution whose log transform follows
normal distribution with mean µ and standard deviation σ ; Cauchy(µ, σ ) to denote Cauchy distribution with location
parameter µ and scale parameter σ .

4.1. Influence of bh on performance of the rank test

First we examine the influence of bh on the test statistics in simulations. This term exists in both the test statistic for
the main effect of treatment and the estimators for the asymptotic variances in the other tests. For i = 1, 2, j = 1, . . . , b,
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Table 1
Influence of bh on type I error estimates of the proposed rank tests at level 0.05. The number of treatments is a = 2, each of size n = 4, and the number of
time points is b.

bh Effect b = 50 b = 80
Normal Lognormal Cauchy Normal Lognormal Cauchy

Treatment (A) 0.0620 0.0490 0.0560 0.0545 0.0490 0.0540
3 Time (B) 0.0565 0.0440 0.0505 0.0495 0.0500 0.0445

Interaction (C) 0.0490 0.0500 0.0585 0.0505 0.0460 0.0500
Simple treatment effect (D) 0.0520 0.0510 0.0655 0.0520 0.0490 0.0505

Treatment (A) 0.0630 0.0500 0.0540 0.0530 0.0500 0.0525
4 Time (B) 0.0535 0.0395 0.0475 0.0455 0.0440 0.0375

Interaction (C) 0.0440 0.0455 0.0530 0.0460 0.0430 0.0445
Simple treatment effect (D) 0.0465 0.0445 0.0615 0.0470 0.0440 0.0460

Table 2
Influence of bh on type I error estimates of the proposed rank tests for unbalanced design at level 0.05. The number of treatments is a = 2, with
n1 = 4, n2 = 7, and the number of time points is b = 30.

bh = 4 bh = 5 bh = 6

Time (B) 0.0540 0.0560 0.0530 0.0490 0.0545 0.0505 0.0460 0.0510 0.0490
Interaction (C) 0.0530 0.0535 0.0525 0.0490 0.0500 0.0505 0.0475 0.0485 0.0480
Simple treatment effect (D) 0.0595 0.0590 0.0655 0.0580 0.0565 0.0615 0.0540 0.0545 0.0575

k = 1, 2, 3, 4, we generated data from model

Xijk = dijk + ξijk (4.1)

dijk = 0.4di,j−1,k + εijk (4.2)

where di1k = 0, and ξijk, εijk are iid from normal, lognormal, or Cauchy distribution with parameterµ = 0 and σ = 1. When
b = 80, for bh being integers from 3 to 7, the type I error estimates at level α = 0.05 for the rank test of no treatment effect
is 0.0545, 0.0530, 0.0530, 0.0520, 0.0530 under the normal model, 0.049, 0.050, 0.051, 0.053, 0.0545 under the lognormal
model, and 0.0575, 0.054, 0.0525, 0.0525, 0.0520, 0.0555 under the Cauchy model. Stable results are also observed for the
tests on the effect of time, treatment by time interaction, and simple treatment effect (see Table 1). In another simulation
using unbalanced design with n1 = 4, n2 = 7 when b = 30, we also obtained acceptable type I error with bh = 4, 5, 6 for
each effect (see Table 2). So the test statistics are stable over a range of values for bh.
Note that bh is the size of the overlapping window to capture the correlations between nearby observations. Therefore,

too small values of bh, such as 1 or 2, may not be enough to give reliable estimation of the asymptotic variance. On the other
hand, it is required that h < 1/2 in Proposition 3.3 and Theorem 3.4. In practice, we recommend to take bh to be an integer
that is reasonably large such that it is smaller than b1/2. We set bh = 4 for the rest of the simulation study.

4.2. Comparison of performance in simulated data

4.2.1. Performance on data satisfying α-mixing condition
In this section, we compare the rank test with those based on original observations (NPorg) in [8,9], and linear mixed

effectsmodelwith a random intercept on skewed data from lognormal, heavy-tailed data fromCauchy distribution, and data
from normal distribution. For interaction or main time effect, NPorg refers to the test statistics in [8]. For main or simple
treatment effect, NPorg refers to those in [9]. The data were generated with the same model as in Section 4.1. All results
reported in this subsection are based on 2000 runs.
The type I error estimates for testing no main effect of treatment, time, treatment effect over time, and no simple

treatment effect at α = 0.05 are reported in Table 3 for designs with the number of time points b = 20, 30, 50, and
80. Both the lme and NPorg perform poorly under the lognormal and Cauchy distributions. On the other hand, the rank test
has good type I error estimates in all situations. In a separate simulation where data were generated frommodel (4.1) using
an unbalanced design with the number of subjects n1 = 4 and n2 = 7 and the error term ζijk having scale parameter i, we
obtained similar results as reported above.
Results from power simulations are summarized in Fig. 1. The simulations are under alternatives to the setting of

Table 3 for testing for no treatment effect with b = 50 (top three panels), and for testing for no interaction effect
with b = 20 (lower three panels). Specifically, the observations were generated as in (4.1) but with dijk from model
dijk = (−1)iτ + 0.4di,j−1,k + εijk for the test of no main treatment effect, and dijk = (−1)iτ f (j − 1) + 0.4di,j−1,k + εijk
for the test of no interaction effect for various τ values (see Fig. 1). The function f (·) takes form f (x) = log(x)/2 for the
normal and f (x) = x for lognormal and Cauchy distributions.
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Table 3
Comparison of type I error estimates at level 0.05. The number of treatments is a = 2, each of size n = 4, and the number of time points is b.

b Effect Normal Lognormal Cauchy
lme NPorg Rank lme NPorg Rank lme NPorg Rank

Treatment (A) 0.050 0.069 0.067 0.028 0.054 0.071 0.021 0.031 0.069
Time (B) 0.054 0.048 0.050 0.029 0.002 0.050 0.021 0.003 0.059

20 Interaction (C) 0.055 0.054 0.060 0.019 0.001 0.060 0.020 0.003 0.052
Simple treatment (D) 0.061 0.058 0.063 0.019 0.001 0.063 0.020 0.004 0.063

Treatment (A) 0.050 0.060 0.061 0.034 0.047 0.057 0.019 0.030 0.064
Time (B) 0.065 0.055 0.061 0.027 0.002 0.061 0.021 0.002 0.057

30 Interaction (C) 0.057 0.050 0.053 0.027 0.001 0.053 0.021 0.002 0.044
Simple treatment (D) 0.059 0.052 0.053 0.029 0.001 0.053 0.021 0.002 0.055

Treatment (A) 0.040 0.060 0.057 0.045 0.044 0.071 0.019 0.028 0.056
Time (B) 0.059 0.044 0.054 0.029 0.001 0.040 0.025 0.001 0.048

50 Interaction (C) 0.058 0.040 0.044 0.021 0.001 0.046 0.017 0.001 0.053
Simple treatment (D) 0.060 0.047 0.047 0.021 0.001 0.045 0.019 0.001 0.061

Treatment (A) 0.052 0.056 0.053 0.021 0.027 0.050 0.025 0.028 0.052
Time (B) 0.064 0.044 0.045 0.027 0.001 0.044 0.020 0.000 0.038

80 Interaction (C) 0.053 0.039 0.046 0.017 0.001 0.043 0.017 0.000 0.045
Simple treatment (D) 0.055 0.042 0.047 0.017 0.001 0.044 0.019 0.001 0.046
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Fig. 1. Estimated power under alternatives. The top three panels are for treatment effect when dijk = (−1)iτ +0.4di,j−1,k+ εijk and the lower three panels
are for interaction effect when dijk = (−1)iτ f (j− 1)+ 0.4di,j−1,k + εijk . In both cases, Xijk = dijk + ξijk with εijk and ξijk follow i.i.d. normal, lognormal or
Cauchy distribution. The function f (x) = log(x)/2 is for the normal and f (x) = x is for lognormal and Cauchy distributions.

For the test of no main treatment effect (top panels of Fig. 1), lme is not as powerful as NPorg and the rank test. The rank
test clearly outperforms NPorg and lme. NPorg has almost no power under lognormality and the Cauchy distribution. Under
normality, the rank test and NPorg have comparable power.
For the test of no interaction effect (lower panels), all three tests have almost identical power under normality whereas

the rank test significantly outperforms NPorg and lme under lognormality and the Cauchy distribution. The lme has better
power than NPorg for the given form of alternatives under lognormality and the Cauchy distribution.
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The poor performance of NPorg under lognormality and Cauchy distribution is because the theoretical argument of NPorg
requires at least 16th central moment to be finite. This is not satisfied for Cauchy distribution and the sample (co)variance
based on small replications is a poor estimator for the (co)variance in lognormal distribution. The rank test, however, does
not rely on any moment assumptions.

4.2.2. Performance on unstructured data
The α-mixing condition is general enough to allow many different covariance structures such as autoregressive (AR)

models, some autoregressive moving average models (ARMA), Gaussian serial correlation, as well as other unnamed
covariance structures as long as the mixing coefficients satisfy the required polynomial decay rate. Such decay rate makes it
possible to have the central limit theorem on nonstationary dependent processes. Even though this rate could be relaxed to
include long range dependent process, the asymptotic variance estimators will employ different forms than those presented
in this manuscript (cf. [9]). For such reason, we advise the reader to take special care if the data do not satisfy the α-mixing
condition with the specified mixing coefficient. Particularly, if the condition is violated, the test statistics in this manuscript
may be used but with bootstrap to determine significance. In the rest of this subsection, we illustrate with a simulation
study for data generated with unstructured covariance matrix upon the request of a reviewer.
Note that unstructured covariance matrix does not satisfy the α-mixing constraint required in this manuscript. To

describe data generation, let diag(·) be the function that extracts the diagonal elements of a matrix to form a vector. Let
Diag(c) be the function that uses the values in vector c to form a diagonal matrix. Denote 1b to be a b-dimensional column
vector of ones and I(i = 1) to be an indicator function for i = 1. We generated data Yijk as below (let eA be an elementwise
exponential transform of a vector A) :

Yik = eLXik , where Xik = (Xi1k, . . . , Xibk)′ has independent element (4.3)
Xijk ∼ N(τ (I(i = 1)− I(i = 2)), c2j ), and cj, j = 1, . . . , b are iid from N(1, 0.2

2),
and L is the lower half triangular matrix from Cholesky decomposition of an unstructured correlation matrix Σ ={
ρbρ
′

b + Diag(1b − diag(ρbρ
′

b))
}
, with ρb being a b-dimensional column vector with elements generated from uniform

(0, 1) independently. In this data generation setting, the marginal distribution of the data is lognormal distribution. The
simulation is done with a = 2, b = 50, and n1 = n2 = 4. When τ = 0, the null hypothesis of no main treatment effect and
no interaction effect are satisfied. When τ 6= 0, both main effect of treatment and the interaction effects of treatment over
time exist.
We compare the proposed rank test with some benchmarkmethods: linear mixed effects model with various covariance

structures (R version 2.7.2 in linux using package nlmewith command lme), generalized least squaresmethod (using package
nlme with command gls), and generalized estimating equation (GEE) approach (using package gee) with independent
working correlation using robust variance estimator and Gaussian family or quasi-likelihood. For other covariance
structures, GEE fails to converge.
The proportions of rejections at 0.01 level for no treatment by time interactions and no main treatment effects based on

3000 runs are reported in Tables 5 and 6 respectively. The parameters of interaction effects lie in a high-dimensional space
while those for the main treatment effects lie in a low-dimensional space. The estimated level corresponds to the case with
τ = 0 that is under the null hypothesis. It can be seen that the tests of interaction effect become conservative under the
null with the exception of generalized estimating equations approach being liberal. Under the alternative where there are
interaction effects, the rank test has the best power. Note that if the dimension b is small but ni’s are large, then both linear
mixed effects model and generalized estimating equations allow to specify unstructured covariance structure. However, in
the small ni, large b setting, this option is not possible for these classical methods.
For the test of no main treatment effect, none of the tests considered have acceptable type I error under this data

generation setting (see first column of Table 6). Due to this reason, we can not use proportion of p-values that are less
than the true level 0.01 to estimate the power. Instead, we find the rejection region using percentiles of all p-values when
the data were generated under the null hypothesis. Then we use the proportion of p-values for data generated under the
alternatives falling inside the rejection region to give bootstrap estimate of the power. The power estimates reported in
Table 6 are the bootstrap power. It can be seen that the likelihood based tests from linear mixed effects models barely have
any power to detect deviations from the null hypothesis.
In summary, the simulation study in this subsection suggests that the test statistics with asymptotic normal distribution

still maintain acceptable type I error with good powerwhen the covariancematrix is randomly generatedwith no structure.
However, the test of no treatment effect based on asymptotic chi-square distributionmay fail to maintain the type I error as
is also the case for all other tests compared in this subsection. Correspondingly, bootstrap estimate of the significance with
the proposed test statistic could be used to give a powerful test for the treatment effect.

4.3. Application to Hessian fly data

In this section, we apply the proposed rank test to a data set collected for studying the effect of pheromone and color
in attracting Hessian fly in Kansas State University. The experiment involves two factors: treatment with 3 levels (blank,
pheromone CP4, or pheromone CP5) and color with 2 levels (yellow or white). Four traps are used as replications for each
treatment and color combination. A fixed amount of the same pheromone compounds was added to each trap that uses
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Table 4
p-values for testing the effects in Hessian fly data.

Effects NPorg Rank Effects from GEE GEE

Treatment 1.11× 10−16 0 Treatment 0.787
Color 0.0135 0.0027 Color 0.783
Treatment:color 2.78× 10−8 0 Treatment:color 0.393
Time 0 0 Time 0.441
Treatment:time 0.115 5.3× 10−8 Treatment:time 0.877
CP4.vs.CP5 0.846 0.29 Color:time 0.662
Pheromone.vs.Blank 3.83× 10−10 0 Treatment:color:time 0.885

Table 5
Proportion of rejections at 0.01 level for no treatment and time interaction effect based on 3000 runs. The data Yijk were generated from lognormal
distribution as in (4.3) with unstructured covariance matrix. Table legend: NPorg: the Wang and Akritas [8] test based on original observations; Rank:
the proposed rank test; lmeRan: linear mixed effects model (lme) with a random intercept; lmeRanAR1: lme with a random intercept plus an AR(1) serial
correlation; lmeRanGaus: lmewith a random intercept plus Gaussian serial correlation; glsAR1: generalized least squares test with AR(1) serial correlation;
geeInd: GEE with Gaussian family using independent working correlation; geeQuasi: GEE with Quasi-likelihood using independent working correlation.

Estimated Power estimate
level τ = 0.8 τ = 1 τ = 1.25 τ = 1.5 τ = 2.5 τ = 3

NPOrg 0.000 0.039 0.089 0.167 0.241 0.441 0.465
Rank 0.002 0.603 0.729 0.816 0.871 0.971 0.983
lmeRan 0.007 0.413 0.516 0.608 0.689 0.862 0.888
lmeRanAR1 0.004 0.371 0.470 0.570 0.655 0.840 0.866
lmeRanGaus 0.004 0.377 0.475 0.574 0.658 0.838 0.866
glsAR1 0.001 0.327 0.434 0.522 0.610 0.801 0.838
geeInd 0.056 0.526 0.590 0.648 0.690 0.736 0.731
geequasi 0.056 0.526 0.590 0.648 0.690 0.736 0.731

Table 6
Proportion of rejections at 0.01 level for no treatment effect based on 3000 runs. The data Yijk were generated from lognormal distribution as in (4.3) with
unstructured covariance matrix. Table legend is same as those in Table 5.

Estimated Bootstrap Bootstrap power estimate
level level τ = 0.8 τ = 1 τ = 1.25 τ = 1.5 τ = 2.5 τ = 3

NPOrg 0.207 0.010 0.749 0.744 0.718 0.679 0.539 0.494
Rank 0.238 0.010 0.993 0.998 1.000 1.000 1.000 1.000
lmeRan 0.139 0.011 0.135 0.115 0.081 0.049 0.016 0.009
lmeRanAR1 0.114 0.012 0.161 0.146 0.098 0.061 0.022 0.012
lmeRanGaus 0.118 0.012 0.161 0.140 0.093 0.057 0.020 0.010
glsAR1 0.083 0.011 0.187 0.166 0.115 0.077 0.020 0.018
geeInd 0.047 0.012 0.359 0.367 0.322 0.286 0.200 0.193
geequasi 0.047 0.012 0.359 0.367 0.322 0.286 0.200 0.193

pheromone every two weeks. The number of flies caught in each trap was recorded every other day leading to 36 repeated
measurements per trap. Of interest to the entomologist is the pheromone effect compared to blank with no pheromone,
color effect, difference between CP4 and CP5, and interactions among the factors. Yellow traps with CP4 caught a total of
742 flies while white traps with CP4 only caught 488 flies; yellow traps with CP5 caught 899 flies but white traps with CP5
only caught 267 flies; blank yellow and white traps caught 80 and 23 flies respectively. These summary statistics suggested
a significant color effect and pheromone effect. In addition, a boxplot (not shown) suggested that many of the counts are
zero over time and the variations of the counts differ over time and over different treatment and color combinations.
To apply the rank tests, the treatment and color combinations are treated as the levels of a single factor and the individual

effect of color or pheromone is obtained through contrast matrices. The p-values are listed in Table 4 alongwith the p-values
fromNPorg and GEE in the same table for comparison. GEE does not have power to detect any significant effects for this data
set. This happens because GEE requires a large number of subjects and a small number of within subject measurements for
its validity. This data set, on the contrary, has only 4 traps with a large number of within trap measurements.
For the effect of color, the rank test yields p-value 0.0027 while the NPorg test gives p-value of 0.0135. The p-value for

treatment by time interaction effect is 5.3× 10−8 for the rank test and 0.115 for the test of NPorg. For the rest of the effects,
both the rank test and NPorg yield highly significant results except that CP4 is not significantly different from CP5 in either
test. Taken into account the summary statistics, we see that the rank test provides stronger evidence for the color effect and
treatment by time interaction effect than the tests based on original observations.

5. Summary

In this paper, we developed rank test for high-dimensional heteroscedastic functional data. The theory obtained under
a nonstationary α-mixing condition is valid for both small and large number of clusters with large unknown correlation
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matrices. In the case of only a small number of clusters, the test statistics gain power from a large number of repeated
measurements. The test statistic for the hypothesis of no main effect of treatment has asymptotically a Chi-square
distribution. Other test statistics that deal with hypotheses involving a large number of parameters have asymptotically
normal distributions. In a real application and simulation studies, the proposed rank test significantly outperforms those
based on original observations for skewed or heavy-tailed data as in lognormal or Cauchy case.
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Appendix A. Some major technical arguments

In this section, we state some lemmas and give the derivation of the theorems. Detailed proofs of the lemmas are given
in Appendix B. Denote uijk = Xijk − µij and pij = E(H(Xijk)).

Lemma A.1. Let F = (F 1., . . . , F a.)′ and F̂ = (̂F 1., . . . , F̂ a.)′. Then as b → ∞, regardless of whether the ni go to infinity or
remain bounded,

√
N
∫
(Ĥ − H) d(̂F− F)

p
→ 0.

Above relationship also holds for ñ→∞ and b stays bounded. Here the asymptotics is under the setting of b→∞.

Lemma A.2. Let Rc = (R111 − µR,11, R112 − µR,11, . . . , R11n1 − µR,11, R121 − µR,12, . . . , Rabna − µR,ab), where µR,ij =
NE(H(Xijk))+ 1/2, and let PASE(·) be the function defined as

PASE(u) =
1
ab

a∑
i=1

b∑
j=1

ni∑
k=1

u2ijk
n2i
−
1
ab

a∑
i=1

b∑
j=1

ni∑
k6=k′

uijkuijk′

n2i (ni − 1)
. (A.1)

Then

(a) ñ
√
b[ASER − PASE(Rc)]/N2 = op(1).

(b) ñASER/N2
p
→ σ̃ 2

∗
, where σ̃ 2

∗
= limb→∞(ab)−1

∑
i,j,k ñσ̃

2
ij /n

2
i provided that the limit exists.

Lemma A.3. Let PB(·), PC (·) be the functions defined as in

PB(u) =
a
b

b∑
j=1

ũ2.j., PC (u) =
1

(a− 1)b

a∑
i=1

b∑
j=1

u2ij. −
a

b(a− 1)

b∑
j=1

ũ2.j., (A.2)

with uijk replaced by Rijk − µR,ij, where µR,ij = 1/2 + Npij. and Rc is given in Lemma A.2. Then as b → ∞ while a remains
bounded,

(a) under H0(B), ñ
√
b(ASBR − PB(Rc))/N2

p
→ 0;

(b) under H0(C), ñ
√
b(ASCR − PC (Rc))/N2

p
→ 0.

Proof of Theorem 3.2. First we show that the limit of ζ̃1 and ζ̃2 exists. By Lemma 3.1, we know that {Yijk = H(Xijk), j =
1, . . .} is bounded by one and is an α-mixing process with the same decay rate as {Xijk, j = 1, . . .}. Therefore |σ̃ijj′ | =
|cov(Yijk, Yij′k)| ≤ α|j−j′| (see Lemma 2 on page 365 of [20]). We have for all b,

ζ̃1 =
2
a2b

b∑
j=1

b∑
j′=1

a∑
i=1

σ̃ 2ijj′

ni(ni − 1)
≤
2
ab

b∑
j=1

b∑
j′=1

α2
|j−j′| =

4
ab

b−1∑
m=0

(b−m)α2m ≤
4
a

b−1∑
m=0

α2m <∞.

Similarly,

|̃ζ2| ≤
2
a2b

b∑
j=1

b∑
j′=1

a∑
i6=i′

|σ̃ijj′ σ̃i′jj′ |

nini′
≤
2
b

b∑
j=1

b∑
j′=1

α2
|j−j′| <∞, as b→∞.

Absolute convergence of ζ̃1 and ζ̃2 implies that their limits exist.
Let PASE(Rc), PB(Rc) and PC (Rc) be the functions defined by PASE(·) in (A.1), PB(·) and PC (·) in (A.2), respectively, with

argument Rc given in Lemma A.2. By Lemmas A.2 and A.3, we only need to consider the asymptotic distribution of the
projections ñ

√
b(PB(Rc) − PASE(Rc))/N2 and ñ

√
b(PC (Rc) − PASE(Rc))/N2 when ni go to∞ as b → ∞, under H0(̃B) and
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H0(̃C), respectively. Let P1(·), P2(·) be the functions defined as P1 and P2 in

P1 =
1
ab

a∑
i=1

b∑
j=1

ni∑
k6=k′

uijkuijk′
ni(ni − 1)

, P2 =
1
ab

a∑
i6=i′

b∑
j=1

uij.ui′j., (A.3)

respectively, but with uijk replaced by Rijk − µR,ij, and let P1(Y), P2(Y) be similarly defined but with Yijk − pij replacing
the uijk. Then PB(Rc) − PASE(Rc) = P1(Rc) + P2(Rc) and PC (Rc) − PASE(Rc) = P1(Rc) − P2(Rc)/(a − 1). We also have
ASDR − ASED,R = P1(Rc)− P2(Rc)/(a− 1). If we can show the following

ñ
√
b
(
P1(Rc)
N2
− P1(Yc)

)
= op(1) and ñ

√
b
(
P2(Rc)
N2
− P2(Yc)

)
= op(1), (A.4)

then the result would follow from that of Theorem 3.2 of [8]. Write

P1(Rc)
N2
− P1(Yc) =

D5 + 2D6
ab

,
P2(Rc)
N2
− P2(Yc) =

D7 + 2D8
ab

,

where

D5 =
∑
i,j

ni∑
k6=k′

(Zijk − Yijk)(Zijk′ − Yijk′)
ni(ni − 1)

, D6 =
∑
i,j

ni∑
k6=k′

(Zijk − Yijk)(Yijk′ − pij)
ni(ni − 1)

,

D7 =
a∑
i6=i′

b∑
j=1

(Z ij. − Y ij.)(Z i′j. − Y i′j.), D8 =
a∑
i6=i′

b∑
j=1

(Z ij. − Y ij.)(Y i′j. − pi′j).

It can be shown that ñD5/(a
√
b), ñ/(a

√
b)D6, ñ/(a

√
b)D7, ñ/(a

√
b)D8 are all op(1), which completes the proof. Here we will

only show that ñ/(a
√
b)D6 = op(1).

E
(
n2(a)
a2b

D26

)
=
4n2(a)
a2bN2

∑
i,j

ni∑
k6=k′

∑
i2,j2

ni∑
k2 6=k′2

∑
i1,j1,k1

∑
i3,j3,k3

E
{
(Yijk′ − pij)(Yi2j2k′2 − pi2j2)

(ni − 1)(ni2 − 1)

1
ni2ni
[c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)][c(Xi3j3k3 , Xi2j2k2)− Fi3j3(Xi2j2k2)]

}
.

Note that the expectation under the summation is zero if the number of different elements in set {k, k′, k2, k′2, k1, k3} is five
or six.When the number of different elements in set {j, j2, j1, j3} is atmost two, the summation isO(b−1). For j 6= j2 6= j1 6= j3,
the expectation is not zero only if
(a) All four terms under the expectation are correlated. In this situation, we must have i = i1 = i2 = i3 and

k′ = k1 = k′2 = k3. A representative term in above summation is∑
j<j2<j1<j3

E
{
(Yijk′ − pij)(Yij2k′ − pij2)[c(Xij1k′ , Xijk)− Fij1(Xijk)]

(ni − 1)(ni − 1)
1
nini
[c(Xij3k′ , Xij2k′)− Fij3(Xij2k′)]

}

≤

b∑
j<j2<j1<j3

64min(α1/2j2−j, α
1/2
j1−j2

)
1

(ni − 1)2n2i
= O

(
b2

(ni − 1)2n2i

)
;

or
(b) the four terms under the expectation form two independent groups with two correlated terms in each group. The

proof in this situation is similar to (B.6). When the number of different elements in set {j, j2, j1, j3} is three, the summation
is O(b−1) and the proof is similar to that when j 6= j2 6= j1 6= j3. Thus ñ/(a

√
b)D6 = op(1). �

Proof of Proposition 3.3. We show onlŷ̃ζ 1/N4− ζ̃1 p
→ 0. The other one is similar and is omitted. To make symbols easier,

we write ζ̂1(Z) and ζ̂1(Y) as the statistics when the Xijk in ζ̂1 is replaced by Zijk and Yijk respectively. Similar notations for
σ̂ijj′(Z) and σ̂ijj′(Y) will be used. Note that

̂̃
ζ 1 = N4ζ̂1(Z). Apply Proposition 3.3 in [8] on Yijk, we have ζ̂1(Y)− ζ̃1

p
→ 0. So it

remains to show that ζ̂1(Z)−ζ̂1(Y) = op(1).Write each of the difference Zijk1−Zijk2 as Zijk1−Zijk2−(Yijk1−Yijk2)+(Yijk1−Yijk2),
and note that Zijk, Yijk are uniformly bounded by 1, we have

σ̂ijj′(Z)− σ̂ijj′(Y) ≤
ni∑

k1 6=k2 6=k3 6=k4

4[Zijk1 − Zijk2 − (Yijk1 − Yijk2)][Zij′k1 − Zij′k2 − (Yij′k1 − Yij′k2)]
ni(ni − 1)(ni − 2)(ni − 3)

+

ni∑
k1 6=k2 6=k3 6=k4

6[Zijk1 − Zijk2 − (Yijk1 − Yijk2)](Yij′k1 − Yij′k2)
ni(ni − 1)(ni − 2)(ni − 3)
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+

ni∑
k1 6=k2 6=k3 6=k4

6[Zij′k1 − Zij′k2 − (Yij′k1 − Yij′k2)](Yijk1 − Yijk2)
ni(ni − 1)(ni − 2)(ni − 3)

= Op(N−1/2).

So ζ̂1(Z)− ζ̂1(Y) = Op
(
b−1N−1/2

∑b
j=1
∑C(j,h)
j′=C(j,h)

)
= Op(bh/

√
N) = op(1). �

Proof of Theorem 3.4. By Slutsky’s Theorem, we only need to show

1
√
N
CaWR

d
→ N(0r , Ca Diag(ηY1, . . . , ηYa)C′a), η̂Ri/N2 − ηYi = op(1), (A.5)

where 0r is a vector of zeros and ηYi = limb→∞ NVar
(
Y i.. − E(Y i..)

)
. Let η̂Yi be similarly defined as η̂Ri with R replaced by

Y . To show the asymptotic normality in (A.5), note that
∫
Ĥ d̂F i. = 1

b

∑b
j=1

1
ni

∑ni
k=1 Ĥ(Xijk) = N

−1
(
Ri.. − 1

2

)
. So WR =

N
∫
Ĥ d̂F+ 1

2 · 1a, where 1a is an a dimensional vector of one’s. Since Ca is a contrast matrix. So under H̃(A),

1
√
N
CaWR =

√
NCa

∫
Ĥ d̂F =

√
NCa

∫
Ĥ d(̂F− F).

It suffices to find the asymptotic distribution of
√
N
∫
Ĥ d(̂F− F). Note that

√
N
∫
H d(̂F− F) =

√
N
(
Y 1.. − E(Y 1..), . . . , Y a.. − E(Y a..)

)′
=
√
N[WY − E(WY )],

whereWY = (Y 1.., . . . , Y a..)′.

Apply the proof for Theorem 3.2 of [9] on Yijk, we get
√
N(Y i..−E(Y i..))

d
→ N(0, ηYi).Note that ηYi <∞ is guaranteed by

theα-mixing condition. By independence of the observations fromdifferent group, we have
√
N[WY−E(WY )]

d
→ Na(0,VY )

as a → ∞, c → ∞, where VY = Diag(ηY1, . . . , ηYa). Apply Continuous Mapping Theorem, we have
√
NCaWY

d
→

Na−1(0, CaVYC′a). Therefore, the proof of the theorem is complete since
√
N
∫
(Ĥ − H) d(̂F− F)

p
→ 0 by Lemma A.1.

To show the second equation in (A.5), we only need to show η̂Ri/N2 − η̂Yi = op(1) because η̂Yi is a consistent estimator
for ηYi.

bni(ni − 1)
n

(̂
ηRi/N2 − η̂Yi

)
=

b∑
j=1

bh∑
j′=−bh

ni∑
k=1

[
Zijk − Z ij. − Yijk + Y ij.

] [
Zi(j+j′)k − Z i(j+j′). − Yi(j+j′)k + Y i(j+j′).

]
+

b∑
j=1

bh∑
j′=−bh

ni∑
k=1

[
Zijk − Z ij. − Yijk + Y ij.

] [
Yi(j+j′)k + Y i(j+j′).

]
+

b∑
j=1

bh∑
j′=−bh

ni∑
k=1

[
Zi(j+j′)k − Z i(j+j′). − Yi(j+j′)k + Y i(j+j′).

] [
Yijk + Y ij.

]
.

The first term is O(2nib
1
4 /n) and the second and the third terms are both O(

√
bni/
√
n). Thus η̂Ri/N2 − η̂Yi =

Op
(√
n(ni − 1)−1b−1/4

)
= op(1). �

Appendix B. Proof of Lemmas

Proof of Lemma A.1. The component of the vector
√
N
∫
(Ĥ − H) d(F̂− F) is

√
N
∫
(Ĥ − H) d(̂Fij − Fij) =

1
√
N

∑
i1,j1

ni1

∫
(̂Fi1j1 − Fi1j1) d(̂Fij − Fij)

=
1
√
N

∑
i1,j1

{
ni1
ni

ni∑
k=1

(̂Fi1j1(Xijk)− Fi1j1(Xijk))−
ni1∑
k1=1

[
1− Fij(Xi1j1k1)−

∫
Fi1j1 dFij

]}

=
1
√
N

b∑
j1=1

nh(Xj1 ,Xij),



H. Wang, M.G. Akritas / Journal of Multivariate Analysis 101 (2010) 1791–1805 1803

where

h(Xj1 ,Xij) =
1
nni

∑
i1,k1

ni∑
k=1

{
c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)−

[
1− Fij(Xi1j1k1)−

∫
Fi1j1 dFij

]}
,

Xj1 = (X1j11, . . . , Xaj1na)
′, and Xij = (Xij1, . . . , Xijni)

′. Note that h(Xj1 ,Xij) is uniformly bounded by 4 and satisfies

Eh(Xj1 ,Xij) = E[h(Xj1 ,Xij)|Xj1 ] = E[h(Xj1 ,Xij)|Xij] = 0. (B.1)

The component of the vector
√
N
∫
(Ĥ − H) d(̂F− F) is

√
N
b

b∑
j=1

∫
(Ĥ − H) d(̂Fij − Fij) =

√
N
bN

b∑
j=1

b∑
j1=1

nh(Xj1 ,Xij)

and

E

(√
N
b

b∑
j=1

∫
(Ĥ − H) d(̂Fij − Fij)

)2
=
n2

b2N

b∑
j=1

b∑
j1=1

b∑
j2=1

b∑
j3=1

E
[
h(Xj1 ,Xij)h(Xj2 ,Xij3)

]
=
n2

b2N

b∑
j=1

b∑
j3=1

[
2

b∑
j1<j2

E
[
h(Xj1 ,Xij)h(Xj2 ,Xij3)

]
+

b∑
j1=1

E
[
h(Xj1 ,Xij)h(Xj1 ,Xij3)

]]
= uD1 + uD2 + uD3 + uD4 + uD5,

where

uD1 =
2n2

b2N

b∑
j1<j2

b∑
j<j3

E
[
h(Xj1 ,Xij)h(Xj2 ,Xij3)

]
,

uD2 =
2n2

b2N

b∑
j1<j2

b∑
j>j3

E
[
h(Xj1 ,Xij)h(Xj2 ,Xij3)

]
,

uD3 =
2n2

b2N

b∑
j1<j2

b∑
j=1

E
[
h(Xj1 ,Xij)h(Xj2 ,Xij)

]
,

uD4 =
2n2

b2N

b∑
j1=1

b∑
j<j3

E
[
h(Xj1 ,Xij)h(Xj1 ,Xij3)

]
, uD5 =

n2

b2N

b∑
j=1

b∑
j1=1

E[h2(Xj1 ,Xij)].

Obviously, uD5 = O(n/(b̃n)) = o(1), since E(h(·, ·)2) = O(n−1i ) which can be verified by examining the expected value in
further detail. Note that

uD1 =
2n2

b2N

b∑
j<j3

b∑
j1<j2

E
[
E[h(Xj1 ,Xij)h(Xj2 ,Xij3)|(Xj1 ,Xij)]

]
= 0.

Similarly uD2 = 0 and

|uD3| ≤
2n2

b2N

b∑
j1<j2

b∑
j=1

∣∣E [h(Xj1 ,Xij)h(Xj2 ,Xij)]∣∣
=
2n2

b2N

b∑
j1<j2

b∑
j=1

∣∣E (E [h(Xj1 ,Xij)h(Xj2 ,Xij)|Xij])∣∣
=
2n2

b2N

b∑
j1<j2

b∑
j=1

I(j = j1 or j = j2)
∣∣E (E [h(Xj1 ,Xij)h(Xj2 ,Xij)|Xij])∣∣ = 0,

where the last equality is due to (B.1). The proof of |uD4| = o(1) is similar to that of |uD3| = o(1). Hence
√
N
b

∑b
j=1

∫
(Ĥ −

H) d(̂Fij − Fij) = op(1) and the proof is complete. �
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Proof of Lemma A.2. We will use the decomposition ASER = PASE(Rc)+ D1(Rc)+ D2(Rc), where PASE(R), D1(R) and D2(R)
are similarly defined as PASE , and

D1(u) = −
1

ab(b− 1)

a∑
i=1

ni∑
k=1

b∑
j6=j′

uijkuij′k
ni(ni − 1)

, D2(u) =
1

ab(b− 1)

a∑
i=1

b∑
j6=j′

uij.uij′.
ni − 1

, (B.2)

with uijk replaced by Rijk−µR,ij. DefineYc = (Y111−p11, . . . , Y11n1−p11, Y121−p12, . . . , Yabna−pab), where pij = E(H(Xijk)) =
E(Yijk). By Lemma A.1 in [8], the proof will be done if we show that in both cases,

ñ
√
b(D1(Rc)/N2 − D1(Yc)) = op (1) , ñ

√
b(D2(Rc)/N2 − D2(Yc)) = op (1) , (B.3)

ñ
√
b(PASE(Rc)/N2 − PASE(Yc)) = op (1) . (B.4)

We will first show (B.3). Let Zijk = Ĥ(Xijk), and write D1(Rc)/N2 − D1(Yc) = D11 + D12, D2(Rc)/N2 − D2(Yc) = D21 + D22,
where

D11 = −
∑
i,k

b∑
j6=j′

(Zijk − Yijk)(Zij′k − Yij′k)
ab(b− 1)ni(ni − 1)

, D12 = −2
∑
i,k

b∑
j6=j′

(Zijk − Yijk)(Yij′k − pij′)
ab(b− 1)ni(ni − 1)

,

D21 = −
∑
i,k,k′

b∑
j6=j′

(Zijk − Yijk)(Zij′k′ − Yij′k′)
ab(b− 1)n2i (ni − 1)

, D22 = −2
∑
i,k,k′

b∑
j6=j′

(Zijk − Yijk)(Yij′k′ − pij′)
ab(b− 1)n2i (ni − 1)

.

It is not hard to show that D11 and D21 are Op(N−1̃n−1). The proofs for D12 and D22 are similar and we will give that for D22.
Write

D22 = 2
a∑
i=1

ni∑
k=1

ni∑
k′=1

b∑
j6=j′

a∑
i1=1

b∑
j1=1

ni1∑
k1=1

[
c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)

] (
Yij′k′ − pij′

)
ab(b− 1)Nn2i (ni − 1)

,

E(D222) =
4

a2b2(b− 1)2N2

a∑
i=1

ni∑
k=1

ni∑
k′=1

b∑
j6=j′

a∑
i1=1

b∑
j1=1

ni1∑
k1=1

a∑
i2=1

ni2∑
k2=1

ni2∑
k′2=1

b∑
j2 6=j3

a∑
i4=1

b∑
j4=1

ni4∑
k4=1

E

{(
Yij′k′ − pij′

)
n2i (ni − 1)

(Yi2j3k′2 − pi2j3)
[
c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)

] [
c(Xi4j4k4 , Xi2j2k2)− Fi4j4(Xi2j2k2)

]
n2i2(ni2 − 1)

}
.

Note that E(c(Xi1j1k1 , Xijk) − Fi1j1(Xijk)|Xijk) = 0, so the expectation under the summation is zero if the number of different
elements in set {k, k′, k1, k2, k′2, k4} is five or six. If the number of different elements in set {j, j

′, j1, j2, j3, j4} is four or less,
the summation is of order O(b−2̃n−2). When all elements in the set {j, j′, j1, j2, j3, j4} are different, without loss of generality,
we can consider a representative case in which j < j′ < j1 < j2 < j3 < j4, k4 = k and k′ = k′2 (Note: the expectation under
the summation is not zero only when the number of different elements in {k, k′, k1, k2, k′2, k4} is four or less). In this case,

b∑
j′<j1<j3<j4

E
{(
Yij′k′ − pij′

) [
c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)

]
(Yi2j3k′2 − pi2j3)

[
c(Xi4j4k4 , Xi2j2k2)− Fi4j4(Xi2j2k2)

]}

=

b∑
j′<j1<j3<j4

E
{[
c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)

] [
c(Xi4j4k, Xi2j2k2)− Fi4j4(Xi2j2k2)

]
×
(
Yij′k′ − pij′

) (
Yi2j3k′ − pi2j3

)}
( note that k4 = k and k′ = k′2 ) . (B.5)

If k′ 6∈ {k, k1, k2},

(B.5) ≤
b∑

j1<j4

∣∣E [c(Xi1j1k1 , Xijk)− Fi1j1(Xijk)] [c(Xi4j4k, Xi2j2k2)− Fi4j4(Xi2j2k2)]∣∣∑
j′<j3

∣∣E (Yij′k′ − pij′) (Yi2j3k′ − pi2j3)∣∣
≤

b∑
j1<j4

4× 2× 2α1/2j4−j1 I(k1 = k2)
b∑
j′<j3

4× 2× 2α1/2j3−j′ = O(b
2I(k1 = k2)). (B.6)

If k′ ∈ {k, k1, k2}, the total number of different elements in set {k, k′, k1, k2, k′2, k4} is three or less, we have the following 3
cases:
• All four terms under the expectation are correlated, which can be dealt with similarly as E(D212).
• The four terms under the expectation form two independent groups with two terms in each group correlated. This
situation can be handled similarly as (B.6).



H. Wang, M.G. Akritas / Journal of Multivariate Analysis 101 (2010) 1791–1805 1805

• The four terms under the expectation form two independent groups and one of the groups contains three correlated
terms, or the four terms form three or four independent groups. In this situation, the expectation is zero.

Therefore, E(D222) = O(b
−2n−3(a)) and so

√
b̃nD22 = op(1).

To show (B.4), write PASE(Rc)/N2 − PASE(Yc) = PRY1 − PRY2, where

PRY1 =
1
ab

a∑
i=1

b∑
j=1

ni∑
k=1

(Zijk − pij)2 − (Yijk − pij)2

n2i

=
1
ab

∑
i,j,k

(Zijk − Yijk)2

n2i
+
2
ab

∑
i,j,k

(Zijk − Yijk)(Yijk − pij)
n2i

,

PRY2 =
1
ab

a∑
i=1

b∑
j=1

ni∑
k6=k′

(Zijk − pij)(Zijk′ − pij)− (Yijk − pij)(Yijk′ − pij)
n2i (ni − 1)

=

∑
i,j

ni∑
k6=k′

(Zijk − Yijk)(Zijk′ − Yijk′)
abn2i (ni − 1)

+ 2
∑
i,j

ni∑
k6=k′

(Zijk − Yijk)(Yijk′ − pij)
abn2i (ni − 1)

.

The first summations in both PRY1 and PRY2 are Op(N−1̃n−1). The second summations in both PRY1 and PRY2 are op(b−1̃n−3)
and the proof is similar to that of

√
b̃nD22 = op(1) and is omitted. Thus the proof of this lemma is completed. �

Proof of Lemma A.3. Note that ASBR − PB(Rc) = −D3(Rc), ASCR − PC (Rc) = (D3(Rc) − D4(Rc))/(a − 1), where D3(Rc)
and D4(Rc) are similarly defined as D3(u) and D4(u) in the proof of Lemma A.2 in [8] with u replaced by Rc . Note that the
expression of D3(Rc) and D4(Rc) is very close to D2(Rc). When ñ→∞ as b→∞, the proof of ñ

√
b(D4(Rc)/N2−D4(Yc)) =

op(1) follows that of (B.3) (see the proof of Lemma A.2). Due to independence of the observations in different groups, the
proof of ñ

√
b(D3(Rc)/N2 − D3(Yc)) = op(1) is not much different from that of (B.3). When ni are bounded, treat ñ as a

bounded number in above argument. Then we complete the proof of the lemma. �
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