Airline Alliances and their Effects on Costs

Philip G. Gayle* and Huubinh B. Le**

This version: February 14, 2014
First version: May 9, 2013

Abstract

Perhaps due to the difficulty of obtaining cost data at the route-level, an interesting but unanswered question in the literature on airline alliances is: How does an alliance influences various components of partner airlines’ costs? Using a methodology that does not require cost data to infer component cost changes, this paper finds that implementation of the Delta/Continental/Northwest alliance decreased the partners’ marginal costs in certain markets, decreased their sunk market entry costs to new markets, but increased their recurrent fixed costs. Each of these cost component change has different implications for short-run versus long-run equilibrium market effects.

Keywords: Airline Alliance; Alliance Cost Efficiencies

JEL Classification codes: L13, L93

Acknowledgement: We thank John Crespi, Hikaru Peterson, Levi Russell, Veronica Pozo, Elizabeth Canales, and Bryon Parman for very helpful suggestions. Any remaining errors are our own.

* Kansas State University, Department of Economics, 320 Waters Hall, Manhattan, KS 66506; Voice: (785) 532-4581; Fax: (785) 532-6919; email: gaylep@ksu.edu; Corresponding author.

** Kansas State University, Department of Economics, 327 Waters Hall, Manhattan, KS 66506; email: hble@k-state.edu.
1. Introduction

The prevalence of airline alliances among domestic carriers following passage of the Airline Deregulation Act in 1978 leads one to wonder the extent to which these alliances generate cost efficiency gains for the partner carriers. Investigating the cost effects associated with an alliance is of particular interest since it is the traditional legacy carriers with hub-and-spoke route networks that typically form alliances, and these carriers face increasingly stiff competition from low-cost-carriers. The most common form of airline cooperation is a codesharing agreement that allows a carrier to put its designator code on its partners’ flights. For example, DL001 is flight 001 operated by Delta. The word operated here means that Delta is the airline that transports the passenger. If Delta has a codesharing agreement with Northwest, this flight can also be marketed and sold by Northwest under the code and flight number NW002 even though Northwest is not the operator of the flight. Thus, a single flight can be ticketed and sold by multiple carriers even though the operator of the flight may be different from the one that sold the ticket.

The literature on codeshare alliances is extensive. Many facets have been examined such as their effects on airfares, passenger traffic, and social welfare [Brueckner and Whalen (2000); Brueckner (2001 and 2003); Bamberger, Carlton and Neumann (2004); Ito and Lee (2007); Gayle (2007, 2008 and 2013); among others]. Nonetheless, perhaps due to the difficulty of obtaining cost data at the route-level, few studies have looked into how airline alliances might influence costs. Furthermore, even the few studies that did, find that alliances have very little impact on costs. For example, Goh and Yong (2006) estimate a translog cost function using firm-level data of 10 US airlines from 1994-2001 and find that the economic magnitude of the effect on cost is small. A one percent increase in the number of alliance partners reduces total costs by only 0.029 percent. In another study by Gagnepain and Marin (2010), they find that although being a member of an alliance on average lowers prices compared to airlines outside the alliance, there are no significant effects of the alliance on airlines' operating costs. Also, Chen (2000) uses the American Productivity Centre (APC) model to empirically investigate the profitability of airlines that are members of an international alliance. The author decomposes changes in airlines’ profitability into changes in their productivity and cost recovery, and finds

1 Important early contributions to this literature include: Oum and Park (1997); Park (1997); Park and Zhang (1998); and Park and Zhang (2000).
that in terms of their ability to recover cost, no airline exhibited any significant improvement regardless of their involvement with other airlines or the size of their partner airlines.

These studies examine cost as a whole (total cost), and even though they find that total cost seems to matter little as a motivating factor for airlines forming alliances, we think that perhaps there are differential changes in various components of costs that may mask cost effects if the analysis only focuses on total cost. More importantly, a disaggregate cost analysis is very useful since changes in marginal cost, recurrent fixed cost, and sunk market entry cost are likely to affect equilibrium market outcomes differentially over different time horizons. For example, theory tells us that a change in marginal cost will be reflected in price more quickly than changes in recurrent fixed or sunk market entry cost. However, changes in recurrent fixed cost and sunk market entry cost are more likely to change the medium to long-run market structure configuration. So a great deal of economic outcomes associated with an alliance could potentially be overlooked if analyses only focus on total cost when analyzing the cost effects of an alliance.

But what is the rationale for positing that an alliance may influence various components of partner airlines’ cost, and why might these cost components be differentially affected? Figure 1 is used to help lay out the arguments why an alliance may influence the three types of costs we stated above.

Figure 1 illustrates two separate hub-and-spoke (HS) route networks operated by Airline 1 and Airline 2 respectively. Airline 1 has a hub airport in city H1 and serves spoke cities A, B and C via this hub. Airline 2 has a hub airport in city H2 and serves spoke cities X, Y and Z via this hub. Furthermore, suppose these two airlines are initially non-allied and each only provides service to their spoke cities via their respective hubs, H1 and H2.

As suggested above, a codeshare alliance effectively allows a carrier to sell tickets for seats on its partners’ plane as if the carrier selling the seats owned these seats. Suppose Airline 1 and Airline 2 form a codeshare alliance, which incentivizes Airline 1 to begin operating a flight between its own hub H1 and Airline 2’s hub H2. The dashed line in Figure 1 represents this new nonstop flight service by Airline 1 between cities H1 and H2. Note that the codeshare alliance allows Airline 1 to use this single new nonstop flight to leverage the expansive reach of Airline 2’s route network. In other words, by codesharing with Airline 2, Airline 1 can offer service to customers in its spoke cities A, B, and C to destinations X, Y and Z, where these customers will
ride on Airline 1’s plane(s) up to city H2, then change over to Airline 2’s plane to get to their final destination. So the codeshare alliance effectively allows Airline 1 to enter several new origin-destination markets more cheaply by leveraging its partners’ network, rather than having to exclusively use its own planes to enter these markets. Therefore, this example illustrates that an alliance can decrease partner airlines’ market entry costs.

![Figure 1: Two separate hub-and-spoke route networks.](image)

By channeling passengers from different origins, who have a common destination, through the carrier’s intermediate-stop hub airport, these passengers can be put on a single plane in the last segment(s) of the trip to their destination. Therefore, the HS network enables carriers to better fill their planes with passengers. It is well documented in the literature that the HS route network structure enables carriers to exploit economies of passenger-traffic density, i.e., the marginal cost of transporting a passenger on a route is lower, the more passengers that the airline transports on segments of the route [Brueckner and Spiller (1994); and Keeler and Formby (1994)].

Our example in Figure 1 can be used to illustrate that a codeshare alliance further enables partner carriers to exploit economies of passenger-traffic density. The additional passenger-traffic that is coming from Airline 1’s spoke cities A, B, and C that will now travel on Airline 2’s network for a segment of the trip to get to cities X, Y, and Z, will allow Airline 2 to better exploit economies of passenger-traffic density. That is, Airline 2’s marginal cost of transporting a passenger on its network is lower because of the higher volume of passengers it now transports due to the alliance. Likewise, due to typical reciprocity of codeshare alliances, Airline 1 will
also enjoy lower marginal cost on its network due to the additional passengers it will transport that originate in cities X, Y, and Z and traveling to destination cities A, B, and C by flying on both partners’ planes to complete the trip.

Accommodating a higher volume of passengers may require partner carriers to acquire more airport gates and a larger airport staff to handle more intensive airport operations. Therefore, it is possible that partners’ recurrent fixed cost could increase as a result of the alliance. On the other hand, it has been argued in the literature that since alliance partners often share their airport facilities (lounges, gates, check-in counters etc.), ground and flight personnel, this could result in more efficient use of airport facilities and staff, which could effectively yield recurrent fixed cost savings [Park (1997)]. The arguments therefore suggest that partner carriers’ recurrent fixed cost may either rise or fall due to the alliance.

In summary, an alliance can cause partner carriers’ sunk market entry cost and marginal cost to fall, but recurrent fixed cost may either fall or rise. If an alliance causes recurrent fixed cost to rise, while other components of cost fall, then an aggregated cost analysis may not capture the economically important ways that an alliance influences various cost components. Unfortunately, a challenge we face in studying these different types of cost effects that may be associated with an alliance is that cost data at the route-level are not readily available.

Therefore, the main objective of our study is to estimate marginal, recurrent fixed, and sunk market entry costs effects associated with an airline alliance using a structural econometric model that does not require the researcher to have cost data. Our study offers two crucial distinguishing features from others in the literature. First, our methodology does not require having actual cost data to draw inference on changes in cost associated with an alliance. Second, our methodology separately identifies changes in economically relevant components of cost associated with an alliance.

The short-run parts of our model allow us to draw inference on how economies of passenger-traffic density – measured indirectly by the size of an airline's presence at the market endpoint cities – might affect marginal cost of transporting a passenger. Medium to long-run parts of our model are used to draw inference on changes in partner carriers’ recurrent fixed and sunk market entry costs associated with the alliance relative to non-alliance carriers. We apply our model to the Delta/Northwest/Continental (DNC hereafter) domestic alliance formed in 2003. Below is a brief summary of the methodology we use.
We begin by specifying and estimating short-run demand and supply of air travel. Consumer demand is estimated via a discrete choice model. For the short-run supply-side of the model, we assume that firms set prices according to a differentiated products Nash equilibrium in prices. This assumption allows us to derive product-specific markups and recover product-level marginal cost. With implied marginal cost estimates in hand, we specify and estimate marginal cost as a function of various regressors. These regressors include time period and alliance-specific dummy variables that allow us to compare how the marginal cost of products offered by Delta, Northwest and Continental changed across the DNC pre-post alliance periods relative to the marginal cost of products offered by other carriers. Furthermore, to indirectly capture the role economies of passenger-traffic density might play, we allow changes in marginal cost to depend on the size of carriers’ presence at the endpoint airports of an origin-destination market.

Product-specific markups from the Nash price-setting game part of the model enables us to compute firm-level variable profits in a market, which we use in the dynamic part of the model to examine the effects of the alliance on recurring fixed and sunk market entry costs. The dynamic part of our model is an entry/exit game in which each airline chooses markets in which to be active during specific time periods in order to maximize its expected discounted stream of per-period profit. Per-period profit comprises of variable profit less per-period fixed cost and a one-time entry cost if the airline is not currently serving the market but plans to do so next period. The dynamic entry/exit game allows us to estimate fixed and entry costs by exploiting estimates of variable profits previously computed from the Nash price-setting game along with observed data on airlines’ decisions to enter and exit certain markets. We allow all firms' (both alliance and non-alliance firms) fixed and entry costs to change in the DNC post-alliance period relative to the pre-alliance period. Consistent with a difference-in-differences identification strategy, we identify fixed and entry cost effects of the alliance by comparing pre-post alliance periods' changes in Delta, Northwest and Continental fixed and entry costs relative to changes in other airlines’ fixed and entry costs over these pre-post alliance periods.

Our empirical results suggest that implementation of the DNC alliance resulted in: (1) A decrease in marginal costs for the alliance partners in markets where the airlines have a large presence at their market endpoints; (2) It reduces sunk market entry costs for the alliance partners; and (3) The alliance however is associated with higher recurrent fixed costs for the partners. The absolute magnitude of the increase in fixed cost is higher than that of the decrease
in entry cost. Interestingly, other firms’ recurrent fixed cost remain unchanged, while their market entry cost decreases over the DNC pre-post alliance periods.

The rest of the paper is organized as follows: The next section presents some background information on the alliance. Section 3 describes the data sample. Sections 4 and 5 present the short-run demand and supply, as well as the dynamic parts of the model, respectively. Section 6 describes the estimation procedure of the short-run part of the model. A brief discussion of those estimation results follows in section 7. Section 8 describes the estimation method for the dynamic part of the model, and results from this estimation are discussed in section 9. Section 10 concludes.

2. Background Information on the DL/NW/CO alliance

On August 23, 2002 three hub-and-spoke route network carriers, Delta, Northwest, and Continental, submit their alliance proposal to the Department of Transportation (DoT) for review. This proposal requests a comprehensive alliance that involves codesharing, reciprocal frequent-flyer programs and reciprocal access to airport lounges. Despite the claim by the airlines that the alliance will benefit consumers in the form of improved services and the expansion of on-line services into new markets, the DoT had serious concerns about the potential anticompetitive effects.2

The two major aspects of concerns are: (1) substantially high combined market share of the three airlines; and (2) the large number of markets in which their service overlap. First, at the time of the proposed alliance, the three airlines have a combined market share of 35 percent—18 percent for Northwest and Continental combined, and 17 percent for Delta—measured by domestic revenue passenger miles. Therefore, the high combined market share of the three carriers is significant when compared to the 23 percent market share of the United/US Airways alliance that was in operation at the time. Second, the three airlines’ services overlapped in 3,214 markets, accounting for approximately 58 million annual passengers. This number of overlapping markets is substantial when compared to the United/US Airways alliance, which only had 543 overlapping markets and 15.1 million annual passengers.

As a result of these facts, regulators were not convinced that the alliance will have much positive effects on consumers nor on the airlines in the form of cost savings. Instead, the alliance can potentially create barriers to entry based on their significantly high combined market share.

In the DoT’s initial review of the proposed alliance, it remarked that the alliance would:

“Create neither substantial operating efficiencies nor substantial cost reductions for the three airlines” and “at many cities the alliance’s impact on the prospects of entry by competing airlines would be substantially equivalent to the impact that a single airline’s dominance would have at that city.”

In order to mitigate these concerns, the DoT outlined several conditions that should be met before the airlines could implement their alliance. These conditions are meant to limit potential collusion, size of market presence, joint marketing efforts that could prevent competition from other carriers, “hoarding” of airport facilities, and “crowding-out” of other airlines from computer reservation system displays. A separate review by the Department of Justice (DoJ) was also conducted, and it came to the conclusion that the alliance “could result in lower fares and better service for passengers”. However, alliance partners cannot codeshare on each other’s flights wherever they offer competing nonstop service.

In the end the airlines agreed to modifications that satisfied regulators and the alliance was allowed to go through. The airlines began their codeshare alliance in June, 2003.

3. Definitions, Data Construction and Descriptive Statistics

3.1 Definitions

A market is directional and defined as a combination of origin and destination cities. For example, air travel from Los Angeles to New York is considered a different market than air travel from New York to Los Angeles. Defining a market this way allows us to capture heterogeneity in demographics across origin cities.

An itinerary specifies the origin, destination, and intermediate-stop(s) cities of the trip. For example, a passenger wanting to travel from Los Angeles to New York may have the option to consider two distinct travel itineraries: (1) a nonstop flight from Los Angeles to New York; or (2) an itinerary that requires one intermediate stop in St. Louis, i.e., Los Angeles to St. Louis, then St. Louis to New York.

Each flight on an itinerary has a ticketing carrier and an operating carrier. The ticketing carrier is the airline that sells the ticket for the seat, whereas the operating carrier is the airline that transports the passenger on its plane. A product is a unique combination of ticketing carrier(s), operating carrier(s), and itinerary. Similar to Gayle (2008), we focus on three types of air travel products: pure online; traditional codeshare; and virtual codeshare.\(^5\)

Table 1 provides examples of the three different types of products, each using an itinerary that requires travel from Atlanta (ATL) to Los Angeles (LAX) with one stop in Houston (IAH). In the case of a pure online product, the same airline is the ticketing and operating carrier on all segments of the trip. Note Delta is the ticketing carrier for both segments of the trip, denoted by DL:DL in the table. Furthermore, Delta is also the operating carrier for both segments of the trip—Atlanta to Houston and Houston to Los Angeles.

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Ticketing Carrier</th>
<th>Operating Carrier</th>
<th>Origin</th>
<th>Intermediate Stop</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Online</td>
<td>DL:DL</td>
<td>DL:DL</td>
<td>ATL</td>
<td>IAH</td>
<td>LAX</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>DL:DL</td>
<td>DL:CO</td>
<td>ATL</td>
<td>IAH</td>
<td>LAX</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>DL:DL</td>
<td>CO:CO</td>
<td>ATL</td>
<td>IAH</td>
<td>LAX</td>
</tr>
</tbody>
</table>

Codeshare products are identified as those having different ticketing and operating carriers. There are two types of codeshare products: (1) Traditional Codeshare; and (2) Virtual Codeshare. A traditional codeshare product is defined as having a single ticketing carrier, but multiple operating carriers, one of which is the ticketing carrier. Referring to the table, while Delta is the ticketing carrier for both segments, it only operates on the first leg of the trip. Continental (CO) operates the Houston to Los Angeles leg. A virtual codeshare product is defined as having the same operating carrier for all segments of the trip, but the ticketing carrier is different from the operating carrier. The key distinction between a traditional and a virtual

\(^5\) Also see Ito and Lee (2007) for a discussion of these types of air travel products.
codeshare product is that the operating carrier does not change across trip segments in a virtual codeshare product, while the operating carrier changes across trip segments in a traditional codeshare product.

3.2 Data Construction

The data we use come from the Office of Airline Information of the Bureau of Transportation Statistics. The dataset is the Airline Origin and Destination Survey (DB1B). DB1B is a 10 percent sample of all airline tickets issued by carriers in the United States. Each observation in the dataset is an itinerary. It includes information such as: (i) the identities of origin, destination, and intermediate stop(s) airports on an itinerary; (ii) the identities of ticketing and operating carriers on the itinerary; (iii) the price of the ticket; (iv) the number of passengers who bought the ticket at that price; (v) total itinerary distance flown from origin to destination; and (vi) the nonstop distance between the origin and destination. The data are quarterly. Since the DNC alliance was implemented in June 2003, we use the third and fourth quarters of 2002 as the pre-alliance period and the third and fourth quarters of 2004 as the post-alliance period.

Following Aguirregabiria and Ho (2012), we focus on air travel between the 65 largest US cities based on the Census Bureau's Population Estimates Program (PEP), which produces estimates of population for the United States. We use data from the category “Cities and Towns”. We group cities that belong to the same metropolitan areas and share the same airport. Table 2 provides a list of the cities and corresponding airport groupings. As in Berry, Carnall and Spiller (2006) and Berry and Jia (2010), we use the geometric mean of a market's origin city population and destination city population as a measure of market size.\(^6\)

In selecting itineraries for estimation, we drop all itineraries with real prices less than $50 or greater than $2,000. Eliminating fares that are too low helps avoid discounted fares that may be due to passengers using their frequent-flyer miles to offset the full price of the trip. We also drop itineraries with the following characteristics: (i) travel outside the 48 mainland U.S.; (ii) one-way tickets; (iii) more than two intermediate stops; and (iv) if there are multiple ticketing carriers.

\(^6\) Since we find that many products have extremely small product shares based on the definition of market size used, we scaled up all products shares in the data set by a common factor. The common factor used is the largest integer such that the outside good share \(S_0 = 1 - \sum_{j=1}^J S_j\) in each market remains positive. In our data set the common factor is 40. It turns out that estimation results are qualitatively similar with or without using this scaling factor.
Table 2
Cities, Airports and Population

<table>
<thead>
<tr>
<th>City, State</th>
<th>Airports</th>
<th>2002 Population</th>
<th>2004 Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York(^1)</td>
<td>LGA, JFK, EWR</td>
<td>8,606,988</td>
<td>8,682,908</td>
</tr>
<tr>
<td>Los, Angeles, CA</td>
<td>LAX, BUR</td>
<td>3,786,010</td>
<td>3,796,018</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td>ORD, MDW</td>
<td>2,886,634</td>
<td>2,848,996</td>
</tr>
<tr>
<td>Dallas, TX(^2)</td>
<td>DAL, DFW</td>
<td>2,362,046</td>
<td>2,439,703</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>HOU, IAH, EFD</td>
<td>2,002,144</td>
<td>2,058,645</td>
</tr>
<tr>
<td>Phoenix, AZ(^3)</td>
<td>PHX</td>
<td>1,951,642</td>
<td>2,032,803</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td>PHL</td>
<td>1,486,712</td>
<td>1,514,658</td>
</tr>
<tr>
<td>San Antonio, TX</td>
<td>SAT</td>
<td>1,192,591</td>
<td>1,239,011</td>
</tr>
<tr>
<td>San Diego, CA</td>
<td>SAN</td>
<td>1,251,808</td>
<td>1,274,878</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>SJC</td>
<td>896,076</td>
<td>901,283</td>
</tr>
<tr>
<td>Denver-Aurora, CO</td>
<td>DEN</td>
<td>841,722</td>
<td>848,227</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td>DTW</td>
<td>922,727</td>
<td>924,016</td>
</tr>
<tr>
<td>San Francisco, CA</td>
<td>SFO</td>
<td>761,983</td>
<td>773,284</td>
</tr>
<tr>
<td>Jacksonville, FL</td>
<td>JAX</td>
<td>758,513</td>
<td>778,078</td>
</tr>
<tr>
<td>Indianapolis, IN</td>
<td>IND</td>
<td>783,028</td>
<td>787,198</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>AUS</td>
<td>671,486</td>
<td>696,384</td>
</tr>
<tr>
<td>Columbus, OH</td>
<td>CMH</td>
<td>723,246</td>
<td>735,971</td>
</tr>
<tr>
<td>Charlotte, NC</td>
<td>CLT</td>
<td>577,191</td>
<td>614,446</td>
</tr>
<tr>
<td>Memphis, TN</td>
<td>MEM</td>
<td>674,478</td>
<td>681,573</td>
</tr>
<tr>
<td>Minneapolis-St. Paul, MN</td>
<td>MSP</td>
<td>660,771</td>
<td>653,872</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>BOS</td>
<td>585,366</td>
<td>607,367</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>BWI</td>
<td>636,141</td>
<td>641,004</td>
</tr>
<tr>
<td>Raleigh-Durham, NC</td>
<td>RDU</td>
<td>503,524</td>
<td>534,599</td>
</tr>
<tr>
<td>El Paso, TX</td>
<td>ELP</td>
<td>574,337</td>
<td>582,952</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>SEA</td>
<td>570,166</td>
<td>570,961</td>
</tr>
<tr>
<td>Nashville, TN</td>
<td>BNA</td>
<td>544,375</td>
<td>570,068</td>
</tr>
<tr>
<td>Milwaukee, WI</td>
<td>MKE</td>
<td>589,975</td>
<td>601,081</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>DCA, IAD</td>
<td>564,643</td>
<td>579,796</td>
</tr>
<tr>
<td>Las Vegas, NV</td>
<td>LAS</td>
<td>506,695</td>
<td>534,168</td>
</tr>
<tr>
<td>Louisville, KY</td>
<td>SDF</td>
<td>553,049</td>
<td>558,389</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>PDX</td>
<td>537,752</td>
<td>533,120</td>
</tr>
<tr>
<td>Oklahoma City, OK</td>
<td>OKC</td>
<td>518,516</td>
<td>526,939</td>
</tr>
<tr>
<td>Tucson, AZ</td>
<td>TUS</td>
<td>501,332</td>
<td>517,246</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>ATL</td>
<td>419,476</td>
<td>468,839</td>
</tr>
<tr>
<td>Albuquerque, NM</td>
<td>ABQ</td>
<td>464,178</td>
<td>486,319</td>
</tr>
<tr>
<td>Kansas City, MO</td>
<td>MCI</td>
<td>443,390</td>
<td>458,618</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>SMF</td>
<td>433,801</td>
<td>446,295</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>LGB</td>
<td>470,398</td>
<td>470,620</td>
</tr>
<tr>
<td>Omaha, NE</td>
<td>OMA</td>
<td>399,081</td>
<td>426,549</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>MIA</td>
<td>371,953</td>
<td>378,946</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>CLE</td>
<td>468,126</td>
<td>455,798</td>
</tr>
<tr>
<td>Oakland, CA</td>
<td>OAK</td>
<td>401,348</td>
<td>394,433</td>
</tr>
</tbody>
</table>

\(^1\) New York-Newark-Jersey;
\(^2\) Dallas-Arlington-Fort Worth-Plano, TX;
\(^3\) Phoenix-Temple-Mesa, AZ
Table 2 continued
Cities, Airports and Population

<table>
<thead>
<tr>
<th>City, State</th>
<th>Airports</th>
<th>2002 Population</th>
<th>2004 Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado Springs, CO</td>
<td>COS</td>
<td>369,945</td>
<td>388,097</td>
</tr>
<tr>
<td>Tula, OK</td>
<td>TUL</td>
<td>390,991</td>
<td>382,709</td>
</tr>
<tr>
<td>Wichita, KS</td>
<td>ICT</td>
<td>354,306</td>
<td>353,292</td>
</tr>
<tr>
<td>St. Louis, MO</td>
<td>STL</td>
<td>347,252</td>
<td>350,705</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>MSY</td>
<td>472,540</td>
<td>461,915</td>
</tr>
<tr>
<td>Tampa, FL</td>
<td>TPA</td>
<td>315,151</td>
<td>320,713</td>
</tr>
<tr>
<td>Santa Ana, CA</td>
<td>SNA</td>
<td>341,411</td>
<td>339,319</td>
</tr>
<tr>
<td>Cincinnati, OH</td>
<td>CVG</td>
<td>322,278</td>
<td>331,717</td>
</tr>
<tr>
<td>Pittsburg, PA</td>
<td>PIT</td>
<td>327,652</td>
<td>320,394</td>
</tr>
<tr>
<td>Lexington, KY</td>
<td>LEX</td>
<td>262,706</td>
<td>274,581</td>
</tr>
<tr>
<td>Buffalo, NY</td>
<td>BUF</td>
<td>287,469</td>
<td>281,757</td>
</tr>
<tr>
<td>Norfolk, VA</td>
<td>ORF</td>
<td>238,343</td>
<td>241,979</td>
</tr>
<tr>
<td>Ontario, CA</td>
<td>ONT</td>
<td>164,734</td>
<td>168,068</td>
</tr>
</tbody>
</table>

3.2.1 Collapsing the Data

Each quarter contains millions of itineraries. The data contain many identical itineraries that have different prices and the number of passengers who bought them at each of these prices. Therefore, for each time period, we aggregate the number of passengers and average the prices across unique itinerary-airline(s) combinations, which creates the *quantity* sold and *price* for each defined product.

Because we only want the set of unique itinerary-airline(s) combinations for each quarter, we collapse the data by our product definition. Each product appears only once in the collapsed dataset. Products purchased by less than 9 passengers throughout an entire quarter are eliminated. The four quarters of cleaned data contain a total of 152,983 products across 2,898 markets.

3.2.2 Creation of Other variables

In the collapsed dataset we create a few more variables. The *observed product share* variable is created by dividing quantity sold by the market size. Measured non-price product characteristic variables include: *Interstop; Inconvenience; and Opres_demand*. *Interstop* counts the numbers of intermediate stops in a product. This variable constitutes one measure of the travel inconvenience embodied in a product’s itinerary. *Inconvenience* is a distance-based

7 Berry (1992), Aguirregabiria and Ho (2012) among others use similar, and sometimes more stringent, quantity threshold to help eliminate idiosyncratic product offerings that are not part of the normal set of products offered in a market.
measure of the “directness” of travel between the origin and destination that is embodied in a product’s itinerary. This variable is computed by dividing a product’s itinerary distance flown by the nonstop flight distance between the origin and destination. Therefore, the *Inconvenience* variable has a minimum value of 1, which corresponds to a product that uses a single nonstop flight from the origin to destination.

The *Opres_demand* variable counts the number of different cities that an airline provides service to via a nonstop flight from the origin airport of the market. Figure 2 provides an illustration of this variable for a given airline. In the figure, each arrow represents a different city to which the airline provides service leaving from the origin of the market. In this case the *Opres_demand* variable for the airline takes a value of 5. The *Opres_demand* variable is intended to help explain consumers’ choice between airlines that offer service from the consumers’ origin city.

![Figure 2: Illustration of *Opres_demand* variable](image)

We create two additional variables that measure the size of an airline's presence at the market endpoints. The variables are, *Opres_cost* and *Dpres_cost*. *Opres_cost* counts number of different cities that an airline offers nonstop flights from going into the origin city of the market, while *Dpres_cost* counts the number of different cities that an airline flies to from the destination city of the market using nonstop flight. Figure 3 provides an illustration of each of these variables for a given airline. In the figure, each arrow pointing towards the origin city represents a different city from which the airline provides service going into the origin of the market. In this case the *Opres_cost* variable for the airline takes a value of 4. On the other hand, each arrow pointing away from the destination city represents a different city to which the airline provides service.
leaving from the destination of the market. In this case the $D_{\text{pres _cost}}$ variable for the airline takes a value of 6. These two size-of-presence variables are intended to indirectly capture an airlines' ability to benefit from economies of passenger-traffic density in a given origin-destination market, and therefore the variables are intended to help capture cost effects.

![Figure 3: Illustration of $O_{\text{pres _cost}}$ and $D_{\text{pres _cost}}$ variables](image)

Dummy variables for quarter, year, origin, destination, and carrier are created to capture unobserved product characteristics that vary across time period, origins, destinations, and carriers. Recall that even though a product may have more than one operating carriers, it has only one ticketing carrier. We use the ticketing carrier as the airline that “owns” the product.

In order to properly identify the different type of products—pure online, traditional codeshare, and virtual codeshare—we recode regional feeder carriers to have their major carriers’ code. For example, a product that involves Delta (DL) and Comair Delta Connection (OH), where one of them is the ticketing carrier and the other the operating carrier, Comair Delta Connection is recoded as Delta. Without recoding, this product would mistakenly be considered a codeshare product because the ticketing and operating carriers are different. Once this recoding is done, dummy variables for product types are created.

Finally, we create three variables that pertain to the DNC alliance: $Post-\text{Alliance}$; DNC_{demand}; and DNC_{mc}. $Post-\text{Alliance}$ is a zero-one time period dummy variable that takes the value of 1 to indicate the post-alliance period—the third and fourth quarters of 2004. DNC_{demand} is a zero-one dummy variable that equals to 1 for products that have either Delta, Northwest or Continental as a ticketing carrier. DNC_{mc} is a zero-one dummy variable that takes the value 1 only for products whose operating carrier or operating carrier group is a subset
of Delta, Continental, or Northwest. The DNC_{demand} variable is included as a regressor in the demand equation, while DNC_{mc} is more appropriate for the marginal cost equation.

Table 3 lists all the carriers in the dataset according to the type of products they offer. While there are 24 airlines that offer pure online products, only 10 are involved in codeshare—traditional or virtual—products. Although regional feeder carriers such as Horizon (QX) and Chautauqua Airlines (RP) are not involved in codeshare products, because we have assigned them to their major carriers’ codes, they do offer pure online products where they sell tickets and operate on all segments of the trip.

<table>
<thead>
<tr>
<th>Airlines Involved in Pure Online Products</th>
<th>Airlines Involved in Codeshare Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airline Name</td>
<td>Code</td>
</tr>
<tr>
<td>American Airlines Inc.</td>
<td>AA</td>
</tr>
<tr>
<td>Aloha Air Cargo</td>
<td>AQ</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td>AS</td>
</tr>
<tr>
<td>JetBlue Airways</td>
<td>B6</td>
</tr>
<tr>
<td>Continental Air Lines Inc.</td>
<td>CO</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td>DL</td>
</tr>
<tr>
<td>Frontier Airlines Inc.</td>
<td>F9</td>
</tr>
<tr>
<td>AirTran Airways Corp.</td>
<td>FL</td>
</tr>
<tr>
<td>Allegiant Air</td>
<td>G4</td>
</tr>
<tr>
<td>Hawaiian Airlines Inc.</td>
<td>HA</td>
</tr>
<tr>
<td>America West Airlines Inc.</td>
<td>HP</td>
</tr>
<tr>
<td>National Airlines</td>
<td>N7</td>
</tr>
<tr>
<td>Vanguard Airlines Inc.</td>
<td>NJ</td>
</tr>
<tr>
<td>Spirit Air Lines</td>
<td>NK</td>
</tr>
<tr>
<td>Northwest Airlines Inc.</td>
<td>NW</td>
</tr>
<tr>
<td>Horizon Air</td>
<td>QX</td>
</tr>
<tr>
<td>Chautauqua Airlines Inc.</td>
<td>RP</td>
</tr>
<tr>
<td>Sunworld International Airlines</td>
<td>SM</td>
</tr>
<tr>
<td>Sun Country Airlines</td>
<td>SY</td>
</tr>
<tr>
<td>ATA Airlines</td>
<td>TZ</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>UA</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>US</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>WN</td>
</tr>
<tr>
<td>Midwest Airlines</td>
<td>YX</td>
</tr>
</tbody>
</table>

3.3 Descriptive Statistics

Table 4 presents descriptive statistics of the variables used in estimation. We use the consumer price index to deflate the price variable. Thus, it is measured in constant year 1999
dollars. The mean fare and number of passengers are approximately $164 and 144, respectively. The \textit{Opres_demand} variable indicates that, on average, airlines offer nonstop service to approximately 28 distinct cities out of the market origin city.

Similar to Aguirregabiria and Ho (2012), to facilitate estimation of the dynamic entry/exit part of the model, we use a number of passenger threshold to determine whether or not an airline is actively servicing an origin-destination market. Specifically, we define an airline to be active in an origin-destination market during a quarter if at least 130 passengers travel on products offered for sale by the airline in this market during the quarter.\footnote{The 130 passenger threshold we use for a directional market is equivalent to the 260 for non-directional market used by Aguirregabiria and Ho (2012).}

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price\footnote{a}</td>
<td>163.920</td>
<td>59.653</td>
<td>51.15</td>
<td>1,588</td>
</tr>
<tr>
<td>Quantity</td>
<td>143.627</td>
<td>457.616</td>
<td>9</td>
<td>10,758</td>
</tr>
<tr>
<td>Itinerary Distance Flown (miles)\footnote{b}</td>
<td>1,547</td>
<td>701.914</td>
<td>67</td>
<td>3,962</td>
</tr>
<tr>
<td>Nonstop Flight Distance (miles)</td>
<td>1,368</td>
<td>652.518</td>
<td>67</td>
<td>2,724</td>
</tr>
<tr>
<td>\textit{Opres_demand}</td>
<td>28.104</td>
<td>27.015</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>\textit{Opres_cost}</td>
<td>27.964</td>
<td>26.861</td>
<td>0</td>
<td>146</td>
</tr>
<tr>
<td>\textit{Dpres_cost}</td>
<td>28.168</td>
<td>27.071</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>Inconvenience\footnote{c}</td>
<td>1.161</td>
<td>0.221</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Interstop</td>
<td>0.886</td>
<td>0.416</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pure Online</td>
<td>0.961</td>
<td>0.195</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>0.012</td>
<td>0.107</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>0.028</td>
<td>0.164</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Observed Product Share</td>
<td>0.007</td>
<td>0.023</td>
<td>6.27E-05</td>
<td>0.8764</td>
</tr>
<tr>
<td>Number of Products</td>
<td>152,983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Markets\footnote{d}</td>
<td>2,898</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\footnote{a Measured in constant year 1999 dollars.}
\footnote{b This variables is reported as “market miles flown” in DB1B database.}
\footnote{c Defined as the ratio of itinerary distance to nonstop distance.}
\footnote{d Recall that a market is defined as a origin-destination-time period combination.}

Table 5 shows the number of entry and exit events for each airline. These entries and exits are critical for estimating the fixed and entry cost functions in the dynamic part of the model. The model assumes that airlines will optimally choose which markets to enter and exit in order to maximize their expected discount streams of future profit. Consequently, they will only enter a particular market if the one-time market entry cost does not exceed their expected
discounted future profit of entering. Moreover, they will exit a market if the per-period fixed cost exceeds the per-period variable profit of operating in that market. The large number of entry and exit events shows that the airline industry is quite dynamic.

<table>
<thead>
<tr>
<th>Airlines</th>
<th>Number of markets entered</th>
<th>Number of markets exited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Air Lines Inc.</td>
<td>457</td>
<td>545</td>
</tr>
<tr>
<td>Northwest Airlines Inc.</td>
<td>317</td>
<td>375</td>
</tr>
<tr>
<td>Continental Air Lines Inc.</td>
<td>214</td>
<td>227</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>413</td>
<td>311</td>
</tr>
<tr>
<td>American Airlines Inc.</td>
<td>346</td>
<td>489</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>165</td>
<td>282</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>193</td>
<td>152</td>
</tr>
<tr>
<td>Other Airlines</td>
<td>361</td>
<td>334</td>
</tr>
<tr>
<td>Total</td>
<td>2484</td>
<td>2721</td>
</tr>
</tbody>
</table>

4. Model

4.1 Demand

Travel demand is modeled using a nested-logit model. Potential passenger c chooses among a set of $J_{mt} + 1$ alternatives in market m during period t, that is, the potential passenger either chooses one of the J_{mt} differentiated air travel products in the market or the outside option/good ($j = 0$). The outside option includes other modes of transportation besides air travel. Products are organized into $G + 1$ mutually exclusive groups, $g = 0, 1, ..., G$ where the outside good is the only member of group 0. A group is a set of products offered by an airline within a market.

Potential passenger c solves the following utility maximization problem:

$$\max_{j \in \{0, 1, ..., J_{mt}\}} \{U_{cjt} = \mu_{jmt} + \delta \zeta_{cgmt} + (1 - \delta)\epsilon_{cjt}^{d}\},$$

where U_{cjt} is passenger c’s indirect utility from choosing product j; μ_{jmt} is the mean level of utility across passengers that choose product j; ζ_{cgmt} is a random component of utility common across all products within the same group; and ϵ_{cjt}^{d} is an independently and identically distributed (across products, consumers, markets and time) random error term assumed to have
type 1 extreme value distribution. The parameter δ lies between 0 and 1 and measures the correlation of consumer utility across products belonging to the same group/airline. The correlation of preferences across products within a group increases as δ approaches 1. In the case where δ is 0, the model collapses to the standard logit model where products compete symmetrically.

The mean utility, μ_{jmt}, is specified as:

$$
\mu_{jmt} = x_{jmt}\phi^x + \phi^p p_{jmt} + \eta_j + v_t + origin_m + dest_m + \xi_{jmt},
$$

(2)

where x_{jmt} is a vector of observed non-price product characteristics. The variables in x_{jmt} were briefly defined in the previous section, they include: (1) the number of intermediate stops in a product (Interstop); (2) an alternate measure of itinerary convenience (Inconvenience); (3) a measure of the size of an airline’s presence at the origin city (Opres_demand); (4) product-level zero-one codeshare dummy variables (Traditional and Virtual codeshare); (5) a zero-one time-period dummy variable that takes the value 1 in the post-alliance period (Post-Alliance); and (6) a dummy variable that takes the value 1 for products offered for sale by either Delta, Northwest, or Continental (DNC_demand). The vector of parameters, ϕ^x, measures passengers’ marginal utilities associated with the measured non-price product characteristics. The price passengers pay for the product is represented by p_{jmt}, and associated parameter, ϕ^p, captures their marginal utility of price. Ticketing carrier fixed effects, η_j, are captured by airline dummy variables. Time period effects, v_t, are captured by quarter and year dummy variables. $origin_m$ and $dest_m$ are origin and destination city fixed effects. ξ_{jmt} is the unobserved (by researchers) component of product characteristics that affect consumer utility. For notational convenience, we drop the market and time subscripts in some subsequent equations.

The demand for product j is given by:

$$
d_j = POP \times s_j(x, p, \xi; \phi^p, \phi^x, \delta),
$$

(3)

where POP is the geometric mean between the origin city population and destination city population, which is our measure of market size. $s_j(x, p, \xi; \phi^p, \phi^x, \delta)$ is the predicted product
share function that has functional form based on the nested logit model.\footnote{The nested logit model has the following well-known predicted product share function: \(s_j = \frac{\exp(\mu_j)}{\sum_{g=1}^{G_g} D_g^{2-\delta}} \times \frac{D_g^{2-\delta}}{[\sum_{g=1}^{G_g} D_g^{2-\delta}]}, \) where \(D_g = \sum_{j \in G_g} \exp(\frac{\mu_j}{1-\delta}) \) and \(G_g \) is the set of products belonging to group \(g \).} \(\boldsymbol{x}, \boldsymbol{p}, \) and \(\boldsymbol{\xi} \) are vectors of observed non-price product characteristics, price, and unobserved product characteristics respectively. \(\phi^p, \phi^x, \) and \(\delta \) are demand parameters to be estimated.

4.2 Variable Profit, Product Markups and Product Marginal Costs

The way in which a codeshare agreement commonly works is that the ticketing carrier markets and sets the final price for the round-trip ticket and compensates the operating carrier for operating services provided. However, partner airlines do not publicize details on their compensation mechanisms actually used, which may even differ across partnerships. Our challenge as researchers is to specify a modeling approach that captures our basic understanding of what is commonly known about how a codeshare agreement works without imposing too much structure on a contracting process about which we have few facts. To achieve this balance we adopt the modeling approach outlined in Chen and Gayle (2007) and Gayle (2013).

As suggested in Chen and Gayle (2007) and Gayle (2013), it is useful to think of a codeshare agreement as a privately negotiated pricing contract between partners \((w, \Gamma)\), where \(w \) is a per-passenger price the ticketing carrier pays over to an operating carrier for transporting the passenger, while \(\Gamma \) represents a potential lump-sum transfer between partners that determines how the joint surplus is distributed. We do not attempt to econometrically identify an equilibrium value of \(\Gamma \) since its value is not essential for the purposes of this paper. However, in laying out the dynamic part of the model, we do show where \(\Gamma \) enters the model.

Assume that the final price of a codeshare product is determined within a sequential price-setting game. In the first stage of the sequential process, the operating carrier sets the price for transporting a passenger using its own plane(s), \(w \), and privately makes this price known to its partner ticketing carrier. In the second stage, conditional on the agreed upon price \(w \) for services supplied by the operating carrier, the ticketing carrier sets the final round-trip price \(p \).
for the codeshare product. The final subgame in this sequential price-setting game is played between ticketing carriers, and produces the final ticket prices observed by consumers.

Each ticketing carrier i offers a set of B_i products for sale. Thus, ticketing carrier i solves the following profit maximization problem:

$$\text{Max}_{p_j} VP_i = \text{Max}_{p_j} \left[\sum_{j \in B_i} (p_j - mc_j)q_j \right],$$

(4)

where VP_i is variable profit of ticketing carrier i; p_j and q_j are the respective price and quantity sold of product j; while mc_j is the effective marginal cost ticketing carrier i incurs by offering product j for sale.

Let $f = 1, \ldots, F$ index the corresponding operating carriers. In the event that product j is a traditional codeshare product, then $mc_j = c_j^i + w_j^f$, where c_j^i is the marginal cost that ticketing carrier i incurs by using its own plane to provide transportation services on some segment(s) of the trip needed for product j, while w_j^f is the price ticketing carrier i pays to operating carrier f for its transportation services on the remaining trip segment(s). If instead product j is a virtual codeshare product, then $mc_j = w_j^f$, where w_j^f is the price the ticketing carrier pays to operating carrier f for its exclusive transportation services in the provision of product j.\(^{10}\) Last, if product j is a pure online product, then $mc_j = c_j^i$. Note that in the pure online product case the ticketing carrier is also the sole operating carrier of product j, i.e., $i = f$.

In summary, the effective marginal cost that ticketing carrier i incurs by providing product j to consumers is given by:

$$mc_j = \begin{cases}
 c_j^i + w_j^f & \text{if product } j \text{ is traditional codeshare;} \\
 w_j^f & \text{if product } j \text{ is virtual codeshare;} \\
 c_j^i & \text{if product } j \text{ is pure online.}
\end{cases}$$

(5)

Note that c_j^i directly constitutes per-passenger expenses incurred by ticketing carrier i when it contributes operating services with its own plane to product j, while w_j^f is correlated with per-

\(^{10}\) The implicit assumption here is that the ticketing carrier of a virtual codeshare product only incurs fixed expenses in marketing the product to potential passengers.
passenger expenses incurred by operating carrier f when it contributes operating services to product j. But why is the price, w^f_j, that operating carrier f charges ticketing carrier i for carrier f’s operating services correlated with marginal cost incurred by carrier f? This is an implication of the assumed sequential price-setting game that determines equilibrium prices of codeshare products. The reason is as follows. In the first stage of the sequential price-setting game, operating carriers each optimally choose w^f_j, i.e., each operating carrier f solves the following profit maximization problem: $\text{Max}_{w^f_j} \left[\sum_{j \in A_f} (w^f_j - c^f_j) q_j \right]$, where A_f is the set of products in the market to which carrier f contributes its transportation services, while c^f_j is the marginal cost that carrier f incurs by using its own plane to provide transportation services to product j. In equilibrium, w^f_j is positively correlated with c^f_j. So both c^f_j and w^f_j in equation (5) are a function of factors that influence the marginal cost of operating carriers. Therefore, when we subsequently specify a parametric marginal cost function for econometric estimation, mc_j will be a function of factors that influence the marginal cost of operating carriers.

In equilibrium, the amount of product j an airline sells equals to the quantity demand, that is, $q_j = d_j = \text{POP} \times s_j(x, p, \xi; \phi_p, \phi_x, \delta)$, which implies that the optimization problem in (4) for each airline can be re-written as:

$$\text{Max}_{p_j} \left[\sum_{j \in B_i} (p_j - mc_j) \times \text{POP} \times s_j(x, p, \xi; \phi_p, \phi_x, \delta) \right]$$

(6)

Such optimizing behavior yields the following system of J first-order equations:

$$\sum_{k \in B_i} (p_k - mc_k) \frac{\partial s_k}{\partial p_j} + s_j = 0 \text{ for all } j = 1, \ldots, J.$$

(7)

The system of first-order equations in (7) can be represented compactly in matrix notation:

$$(\Omega \ast \Delta) \times (p - mc) + s = 0,$$

(8)

where p, mc, and s are $J \times 1$ vectors of product price, marginal costs, and predicted product shares, respectively; Ω is a $J \times J$ matrix of appropriately positioned zeros and ones to reflect ticketing carriers’ “ownership” structure of the J products in a market; Δ is a $J \times J$ matrix of first-
order derivatives of product market shares with respect to prices, where element \(\Delta_{jk} = \frac{\partial s_k}{\partial p_j} \); and .*
is the operator for element-by-element matrix multiplication. Since for purposes of the model
the ticketing carrier is considered the “owner” of a product, in the discussion that follows,
“airline” is synonymous with ticketing carrier.

Equation (8) can be rearranged to compute product markups:

\[
M_{kup}(x, \xi; \Phi^d) = (p - mc) = -(\Omega \cdot \Delta)^{-1} \times s,
\]

where \(\Phi^d = (\phi^p, \phi^x, \delta) \) is the vector of demand parameter estimates. Let \(markup_j(x, \xi; \Phi^d) \)
be an element in \(M_{kup}(x, \xi; \Phi^d) \). Note that \(markup_j(x, \xi; \Phi^d) \) is the product markup function
which depends exclusively on demand-side variables and parameter estimates.

With computed product markups in hand, product marginal costs can be recovered by:

\[
m_{mc,j_{mt}} = p_{j_{mt}} - markup_{j_{mt}}(x, \xi; \Phi^d).
\]

In addition, an airlines’ variable profit in a market can be computed by:

\[
VP_{i_{mt}} = \sum_{j \in B_i} markup_{j_{mt}}(x, \xi; \Phi^d) * q_{j_{mt}}.
\]

5. **Dynamic Entry/Exit Game**

In every period (quarter), each airline decides which market(s) to be active in to
maximize its expected inter-temporal profits. An airline being active in a market means that the
airline actually sells products to consumers in the market even though a subset of those products
may use the operating services of the airline’s codeshare partner carriers.

Let airlines be indexed by \(i \), markets by \(m \), and period by \(t \). An airline’s expected
discounted stream of profit in market \(m \) is given by:

\[
E_t(\sum_{r=0}^{\infty} \beta^r \Pi_{i_{mt}, t+r}),
\]
where $\Pi_{im,t+r}$ is the per-period profit of the airline in market m and $\beta \in (0,1)$ is the time discount factor. Each airline’s per-period profit is specified as the difference between variable profit and the sum of recurrent fixed and one-time market entry costs:

$$\Pi_{imt} = R^*_{imt} - a_{imt}(FC_{imt} + \epsilon^{FC_imt}_t + (1 - s_{imt})[EC_{imt} + \epsilon^{EC_imt}_t]),$$

(13)

where $R^*_{imt} = s_{imt}VP_{imt}$ is the variable profit of airline i in market m during period t. The value VP_{imt} is computed from the short-run price-setting game described previously. s_{imt} is a zero-one indicator variable that equals to 1 if airline i had decided in period $t - 1$ to be active in market m during period t. a_{imt} is also a zero-one indicator variable, but unlike s_{imt}, a_{imt} equals 1 if airline i decides in period t to be active in $t + 1$. Therefore, by definition $s_{imt} = a_{im,t-1}$.

After deciding to be active in a market, we assume that it takes time (one period) for airline i to actually begin offering products to consumers in market m - time-to-build assumption. This time-to-build assumption implies that if $a_{imt} = 1$ and $s_{imt} = 0$, then airline i pays fixed and entry costs in period t even though it does not actually begin offering products to consumers until $t + 1$. Note that in period t, a_{imt} is a decision variable, while s_{imt} is a state variable. So we use different letters (a_{imt} versus s_{imt}) to make the distinction between an airline’s decision versus a state variable.

FC_{imt} and EC_{imt} are the deterministic portions of fixed and entry costs functions respectively and are common knowledge for all airlines. $\epsilon^{FC_imt}_t$ and $\epsilon^{EC_imt}_t$ represent private information shocks to fixed and entry costs respectively. The composite shock $\epsilon_{imt} = \epsilon^{FC_imt}_t + (1 - s_{imt})\epsilon^{EC_imt}_t$ is assumed to be independent and identically distributed (i.i.d) over airlines, markets, and time period based on a specific probability distribution function, which we assume is the type 1 extreme value distribution.

We specify the deterministic portions of fixed and entry costs functions as follows:

$$FC_{imt} = \theta_0^{FC} + \theta_1^{FC}Presence_{imt} + \theta_2^{FC}Post_Alliance_Period_t + \theta_3^{FC}Alliance_Firm_{imt} + \theta_4^{FC}Post_Alliance_Period_t \times Alliance_Firm_{imt},$$

(14)
\[
EC_{int} = \theta_0^{EC} + \theta_1^{EC} \text{Presence}_{int} + \theta_2^{EC} \text{Post_Alliance_Period}_t + \\
\theta_3^{EC} \text{Alliance_Firm}_{int} + \\
\theta_4^{EC} \text{Post_Alliance_Period}_t \times \text{Alliance_Firm}_{int},
\]

(15)

where \text{Presence}_{int} is a measure of the size of an airline’s presence at the endpoint airports of origin-destination market \(m\), which we define as the mean across \text{Opres_cost} and \text{Dpres_cost} variables. \text{Post_Alliance_Period}_t is a zero-one time-period dummy variable that takes the value 1 only during the post-alliance period. \text{Alliance_Firm}_{int} is a zero-one airline dummy variable that takes the value 1 if the airline is one of the airlines that is a part of the alliance, i.e., Delta, Northwest or Continental. The structural parameters to be estimated are:

\[
\{\theta_0^{FC}, \theta_1^{FC}, \theta_2^{FC}, \theta_3^{FC}, \theta_4^{FC}, \theta_0^{EC}, \theta_1^{EC}, \theta_2^{EC}, \theta_3^{EC}, \theta_4^{EC}\}
\]

\(\theta_0^{FC}\) and \(\theta_0^{EC}\) measure the mean fixed and entry costs across airlines, markets and time, respectively. \(\theta_1^{FC}\) and \(\theta_1^{EC}\) capture the effects of the size of an airline’s airport presence on its market-level fixed and entry costs. \(\theta_2^{FC}\) and \(\theta_2^{EC}\) capture how fixed and entry costs change for all other airlines except the alliance partners across the pre- and post-alliance periods. \(\theta_3^{FC}\) and \(\theta_3^{EC}\) measure any persistent systematic difference in mean fixed and entry costs of the alliance partners relative to other airlines. The coefficients of key interest are \(\theta_4^{FC}\) and \(\theta_4^{EC}\), which identify changes in fixed and entry costs resulting from the implementation of the DNC alliance, that is, these parameters capture the possible fixed and entry cost efficiency gains associated with the alliance.

The mean recurrent fixed cost parameter \(\theta_0^{FC}\) may comprise fixed expenses incurred by a ticketing carrier when the carrier markets a codeshare product to potential consumers. In addition, recall that \((w, \Gamma)\) represents a privately negotiated codeshare contract between partner carriers, where \(w\) is a per-passenger price the ticketing carrier pays over to an operating carrier for transporting the passenger, while \(\Gamma\) represents a potential lump-sum transfer between partners that determines how the joint surplus is distributed. We have already shown that \(w\) enters the effective marginal cost of the ticketing carrier. However, the lump-sum transfer between
partners, \(\Gamma \), is nested in \(\theta_{0}^{FC} \), but we do not attempt to separately identify \(\Gamma \) since knowing its value is not essential for the purposes of our paper.

5.1 Reducing the Dimensionality of the State Space

Recall that the variable profit function is defined as:

\[
R_{imt}^{*} = a_{im,t-1}VP_{imt},
\]

where \(VP_{imt}(x, \xi; D^a) \) is computed based on equation (11). Note that variable profits are functions of state variables \((x, \xi)\). Aguirregabiria and Ho (2012) suggest that these state variables can be aggregated into a single state variable, \(R_{imt}^{*} \), rather than treating \((x, \xi)\) as separate state variables, which serves to significantly reduce the dimensionality of the state space. The vector of payoff-relevant state variables is the following:

\[
y_{imt} = \{s_{imt}, R_{imt}^{*}, Presence_{imt}, Post_Alliance_Period_t\}. \tag{17}
\]

Each airline has the same vector of state variables, which it takes into account when making decisions. Decision-making of each airline also depends on the strategies and actions of other airlines via \(R_{imt}^{*} \). Recall that \(R_{imt}^{*} \) depends on competition from other incumbents currently in the market, which implies that this state variable depends on the previous period’s entry/exit decisions of other airlines. Thus, the dynamic entry-exit game does implicitly take into account strategic interaction among competitors.

5.2 Markov Perfect Equilibrium (MPE)

For notational convenience, we drop the market subscript. Let \(\sigma \equiv \{\sigma_i(y_{it}, \epsilon_{it})\} \) be the vector of strategies for each airline where \(y_{it} = \{s_{it}, R_{it}^{*}, Presence_{it}, Post_Alliance_Period_t\} \) is a vector of common knowledge state variables and \(\epsilon_{it} \) is assumed to be \(i.i.d. \). In a Markov Perfect Equilibrium each airline behaves according to its best response strategy, which maximizes its own value function given the state and strategies of other airlines.

Let \(V_{i}^{\sigma}(y_{t}, \epsilon_{it}) \) be the value function for airline \(i \). This value function is the unique solution to the following Bellman equation:
\[V_i^\sigma(y_t, \varepsilon_{it}) = \max_{a_{it} \in \{0,1\}} \left\{ \Pi_{it}^\sigma(a_{it}, y_t) - \varepsilon_{it} \cdot a_{it} + \beta \int V_i^\sigma(y_{t+1}, \varepsilon_{i,t+1}) dG_i(\varepsilon_{i,t+1}) F_i^\sigma(y_{t+1} \mid y_t, a_{it}) \right\} , \] (18)

where \(\Pi_{it}^\sigma(a_{it}, y_t) \) is the expected per-period profit function and \(F_i^\sigma(y_{t+1} \mid y_t, a_{it}) \) is the expected transition of state variables. We describe how state variables transition in Appendix A. The profile of strategies in \(\sigma \) is a MPE if, for every airline \(i \) and every state \((y_t, \varepsilon_{it})\), we have:

\[\sigma_i(y_t, \varepsilon_{it}) = \arg\max_{a_{it} \in \{0,1\}} \left\{ \Pi_{it}^\sigma(a_{it}, y_t) - \varepsilon_{it} \cdot a_{it} + \beta \int V_i^\sigma(y_{t+1}, \varepsilon_{i,t+1}) dG_i(\varepsilon_{i,t+1}) F_i^\sigma(y_{t+1} \mid y_t, a_{it}) \right\} . \] (19)

In Appendix B we illustrate that the MPE can also be represented as a vector of conditional choice probabilities (CCPs) that solves the fixed point problem \(\mathbf{P} = \Psi(\theta, \mathbf{P}) \), where \(\mathbf{P} = \{ P_i(y) : \text{for every firm and state } (i, y) \} \). \(\mathbf{P} = \Psi(\theta, \mathbf{P}) \) is a vector of best response probability mapping, where \(\Psi(\cdot) \) is the CDF of the type 1 extreme value distribution.

6. Estimation of Demand and Marginal Cost Functions

Our strategy for estimating the demand parameters \((\phi^p, \phi^x, \delta)\) is such that the observed market shares, \(S_{jmt} \), are equal to the market shares predicted by the model \(s_{jmt} \). As shown in Berry (1994), in the case of the nested logit model, such an estimation strategy implies the following linear equation:

\[\ln(S_{jmt}) - \ln(S_{0mt}) = x_{jmt} \phi^x + \phi^p p_{jmt} + \delta \ln(S_{jmt/g}) + \eta_j + v_t + \text{origin}_m + \text{dest}_m + \xi_{jmt} , \] (20)

where \(S_{0mt} \) is the observed share of the outside good and \(S_{jmt/g} \) is the observed within group share of product \(j \). Equation (20) can be estimated by Two Stage Least Squares (2SLS) given that the equation is linear, and \(p_{jmt} \) and \(\ln(S_{jmt/g}) \) are endogenous.

We use the following linear specification for the marginal cost function:
\[\hat{m}_{jmt} = \tau_0 + \tau_1 W_{jmt} + \tau_2 \text{Opres_cost}_{jmt} + \tau_3 \left(\text{Opres_cost}_{jmt} \right)^2 + \tau_4 \text{Dpres_cost}_{jmt} \\
+ \tau_5 \left(\text{Dpres_cost}_{jmt} \right)^2 + \tau_6 \text{Post\ Alliance}_{t} + \tau_7 \text{DNC_mc}_{jmt} \\
+ \tau_8 \text{Post\ Alliance}_{t} \times \text{DNC_mc}_{jmt} \\
+ \tau_9 \text{Post\ Alliance}_{t} \times \text{DNC_mc}_{jmt} \times \text{Opres_cost}_{jmt} \\
+ \tau_{10} \text{Post\ Alliance}_{t} \times \text{DNC_mc}_{jmt} \times \text{Dpres_cost}_{jmt} \\
+ \psi_j + \lambda_t + \text{origin}_m + \text{dest}_m + \epsilon_{jmt}^m, \]

(21)

where \(\hat{m}_{jmt} \) represents product-level marginal cost estimates that were recovered using equation (10). \(W_{jmt} \) is a vector of observed marginal cost-shifting variables and \(\tau_1 \) is the associated vector of parameters to be estimated.

Parameters \(\tau_2 \) and \(\tau_3 \) measure how marginal cost changes as an airline’s presence increases at the market origin city (\(\text{Opres_cost} \)). \(\text{Opres_cost} \) counts the number of different cities that an airline has nonstop flights from going into the origin city of the market. Similarly, \(\tau_4 \) and \(\tau_5 \) measure how marginal cost changes as an airline’s presence increases at the market destination city (\(\text{Dpres_cost} \)) measured by the number of different cities that an airline flies to from the destination city of the market using nonstop flight. Parameters \(\tau_2, \tau_3, \tau_4, \) and \(\tau_5 \) should indirectly capture the effects of economies of passenger-traffic densities, i.e., the existence of economies of passenger-traffic density implies the following sign pattern: \(\tau_2 > 0, \tau_3 < 0, \tau_4 > 0, \) and \(\tau_5 < 0 \). This sign pattern of the parameters suggests that an airline’s marginal cost of transporting a passenger in a market decreases as its measure of \(\text{Opres_cost} \) and \(\text{Dpres_cost} \) increases beyond a certain level. The reasonable presumption here is that, as an airline's measures of \(\text{Opres_cost} \) and \(\text{Dpres_cost} \) increase for a given market, the airline is likely to channel more passengers through this market who are on their way to various destinations.

\(\text{Post\ Alliance}_{t} \) is a zero-one time-period dummy variable that equals 1 during post-alliance time periods. \(\text{DNC_mc}_{jmt} \) is a product-dummy indicator variable that equals to 1 for all products where the operating carrier or the operating carrier group is a subset of the three carriers, Delta, Continental, or Northwest. Given that interaction variable \(\text{Post\ Alliance}_{t} \times \text{DNC_mc}_{jmt} \) is included in the model, parameter \(\tau_6 \), which is the coefficient on \(\text{Post\ Alliance}_{t} \), measures, on average, how marginal cost changes over the pre-post DNC alliance periods for
products that are not associated with Delta, Northwest or Continental. Parameter τ_7, which is the coefficient on $DNC_{mc}jt_m$, measures how the mean marginal cost of the alliance partners over the entire sample period differs from other airlines. Parameter τ_8, which is the coefficient on interaction variable $Post\ Alliance_t \times DNC_{mc}jt_m$, measures whether the three partner airlines’ marginal cost changed differently over the pre-post alliance periods relative to other airlines. Thus τ_8 should pick up marginal cost effects of the alliance. For example, $\tau_8 < 0$ suggests that the alliance reduces partner carrier’s marginal cost.

We also include three-way interaction variables, $Post\ Alliance_t \times DNC_{mc}jt_m \times Opres\ cost_{jt_m}$ and $Post\ Alliance_t \times DNC_{mc}jt_m \times Dpres\ cost_{jt_m}$. These variables are used to capture whether marginal cost effects associated with the alliance depend on the size of the partner carriers’ presence at the market origin and market destination cities, respectively. For example, it is possible that the alliance may have a larger impact on marginal cost the larger the partner airlines’ presence at endpoint airports of the relevant market. In the event that economies of passenger-traffic density is the key driving force for marginal cost effects of the alliance, we expect the coefficients associated with these three-way interaction variables to be negative, i.e., $\tau_9 < 0$, and $\tau_{10} < 0$.

ψ_j is an airline-specific component of marginal cost captured by operating carrier/operating carrier group dummy variables. λ_t captures time-varying effects on marginal cost that are unobserved by us the researchers. These unobserved time-varying effects are measured using quarter and year dummy variables. $origin_m$ and $dest_m$ are sets of origin and destination city dummy variables respectively. Finally, $\epsilon_{jm}m$ is an unobserved random component of marginal cost. The marginal cost equation (equation (21)) is estimated via ordinary least squares (OLS).

6.1 Instruments

The product price ($p_{jm}t$) and the within group share ($S_{jm}tg$) variables are likely to be correlated with unobserved product characteristics, $\xi_{jm}t$. Therefore, consistent estimation of coefficients associated with these variables in the demand equation (equation (20)) requires a set of instruments that are uncorrelated with the demand residual but correlated with price and within group share.
The instruments that we use are: (1) itinerary distance; (2) interaction of jet fuel price with itinerary distance; (3) an airline's market sum itinerary inconvenience measure; and (4) mean number of intermediate stops across products offered by an airline in a market.

As discussed in Gayle (2007 and 2013), instruments (1) and (2) are motivated by the fact that a product's price is influenced by the marginal cost of providing the product. The intuition for instrument (1) is that flying distance covered by an air travel product is likely to be correlated with the marginal cost of providing the product. For instrument (2), airlines' marginal costs are likely to change differently when there are shocks to jet fuel price. These two instruments should be valid since itinerary distance and fuel price shocks are unlikely to be correlated with ξ_{jmt}.

Instruments (3) and (4) are primarily used to deal with the endogeneity of within group product share. Instrument (3) measures the sum of itinerary inconvenience associated with products offered by an airline in a market. Itinerary inconvenience is a flight distance-based measure we previously define in the data section of the paper. For the nested logit demand model, we group products by airline. Since passengers may prefer the set of products offered by an airline in a market because these products offer relatively more convenient travel itineraries, then it is likely that within group share is correlated with instrument (3). Similarly, instrument (4) is likely to be correlated with within group share because passengers may prefer a set of products offered by a particular airline to other airlines' products owing to differences in number of intermediate stops associated with the products.

The instruments rely on the fact that the menu of products offered by airlines in a market is predetermined at the time of shocks to demand. Furthermore, unlike price and within group product share, the menu of products offered and their associated non-price characteristics are not routinely and easily changed during a short period of time, which mitigates the influence of demand shocks on the menu of products offered and their non-price characteristics.

11 Jet fuel price data are drawn from the U.S. Energy Information Administration.
7. Results from Estimation of Demand, Markup and Marginal Cost Functions

7.1 Demand Results

Table 6 shows estimation results for Ordinary Least Squares (OLS) and Two-Stage Least Squares (2SLS). Both regressions include sets of dummy variables for ticketing carriers, origin cities, destination cities and time periods, although associated coefficient estimates for the dummy variables are not reported in the table.

Focusing on the first two variables—Price and within group share, \(\ln\left(\frac{S_{i/g}}{g}\right) \)- there are considerable differences in terms of the sign and magnitude of the associated coefficient estimates across the OLS and 2SLS results. The coefficient on Price has the wrong sign (positive) in the OLS regression. Furthermore, although the estimates on the within group share variable are between 0 and 1 in both regressions, the OLS estimate is more than fifteen times the size of the 2SLS estimate. These differences indicate that OLS is biased and inconsistent. The Durbin-Wu-Hausman chi-square test rejects the null hypothesis that Price and within group share are exogenous with over 99 percent confidence. Therefore, the need to use instruments is justified.

We regress each endogenous variable against the instruments using OLS as a check on how well the instruments can explain variations in the endogenous variables. We find that the \(R^2 \) measures for the regressions of price against instruments and within group product share against instruments are 0.128 and 0.409 respectively, which suggest that the instruments do explain variations in the endogenous variables. Therefore, the following discussion is based on results from the 2SLS regression.

The coefficient on the Price variable now has the expected negative sign. Although the coefficient on \(\ln\left(\frac{S_{i/g}}{g}\right) \) is statistically greater than zero, the magnitude is closer to 0 than 1. This suggests that even though products offered by the same airline are closer substitutes relative to the cross substitutability of products offered by different airlines, the degree of brand-loyalty to a given airline’s products is weak.
Table 6
Demand Estimation
152,983 observations. 2002-Q3-Q4 and 2004-Q3-Q4

<table>
<thead>
<tr>
<th>Variable</th>
<th>2SLS Estimates</th>
<th>Std. Error</th>
<th>2SLS Estimates</th>
<th>Std. Error</th>
<th>OLS Estimates</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>-0.0078***</td>
<td>0.0002</td>
<td>0.0004***</td>
<td>0.00004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(S_{1/g}))</td>
<td>0.0334***</td>
<td>0.0052</td>
<td>0.5103***</td>
<td>0.0019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opres_demand</td>
<td>0.0083***</td>
<td>0.0002</td>
<td>0.0136***</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interstop</td>
<td>-1.185***</td>
<td>0.0096</td>
<td>-0.6797***</td>
<td>0.0062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconvenience</td>
<td>-0.9983***</td>
<td>0.0141</td>
<td>-1.0421***</td>
<td>0.0110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>-0.7435***</td>
<td>0.0275</td>
<td>-0.3871***</td>
<td>0.0213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>-0.9560***</td>
<td>0.0181</td>
<td>-0.7084***</td>
<td>0.0139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Alliance</td>
<td>-0.2007***</td>
<td>0.0078</td>
<td>-0.0417***</td>
<td>0.0058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNC_demand</td>
<td>-0.3660***</td>
<td>0.0134</td>
<td>-0.4639***</td>
<td>0.0103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Alliance (\times) DNC_demand</td>
<td>0.0143</td>
<td>0.0118</td>
<td>-0.0708***</td>
<td>0.0092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-1.7697***</td>
<td>0.0478</td>
<td>-3.2277***</td>
<td>0.0312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ticketing carrier effects</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Origin effects</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Destination effects</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarter effects</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.3746</td>
<td></td>
<td>0.6188</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbin-Wu-Hausman</td>
<td>18274***</td>
<td></td>
<td>(\chi^2(2))</td>
<td>Prob_Value = 0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** indicates statistical significance at 1%.

The coefficient on Opres_demand is positive as expected. Passengers prefer to fly with an airline that offers nonstop service to more destinations out of their origin city. Frequent-travelers might benefit the most since they are more likely to join a frequent-flyer program offered by an airline that flies to many nonstop destinations out of their origin city. Participation in such programs allows these passengers to accumulate miles and therefore making them less likely to use other airlines for future travel from their home airport.

The negative coefficients on the variables Interstop and Inconvenience are also expected. Passengers prefer traveling to their destinations using nonstop flights compare to flights that have intermediate stops. Inconvenience is the ratio of the itinerary distance to nonstop distance between the origin and destination cities. It measures the relative itinerary convenience that the variable Interstop does not capture. The level of convenience flying from Atlanta to New York with one stop in Washington DC is likely to be very different than flying from Atlanta to New York with one stop in Denver. Although both itineraries have a single intermediate stop, depending on where that intermediate stop is relative to the origin and destination city, the two itineraries may yield different levels of convenience for the passenger [Gayle (2007)].
The coefficients on the *Traditional* and *Virtual Codeshare* variables are negative. The product type dummy variable excluded from the regression is *Pure Online*. The negative coefficient estimate on the *Traditional Codeshare* variable suggests that traditional codeshare products are less preferred compared to pure online products. Traditional codeshare products have more than one operating carrier, whereas pure online products are ticketed and operated by the same carrier. It may be easier for the same airline to organize and streamline its products more efficiently than multiple airlines can. This organization and streamlining may take the form of the airline’s ability to position its gates at more convenient locations and reducing the layover time for passengers. Despite efforts of partner carriers, the negative coefficient estimate on the *Traditional Codeshare* variable suggests that these conveniences are difficult to achieve in a traditional codeshare product [Gayle (2013)]. Similarly, the negative coefficient estimate on the *Virtual Codeshare* variable suggests that these codeshare products are associated with lower utilities relative to pure online products. Ito and Lee (2007) argue that because the ticket was purchased from a partner carrier, passengers using virtual codeshare products typically cannot get first-class upgrades using their frequent-flyer miles. This makes virtual codeshare products less attractive compared to pure online products.

Post Alliance is a time period dummy variable that equals to one for the post-alliance period. This variable captures the mean change in consumers’ utilities associated with non-DNC products over the pre-post alliance periods. The negative coefficient estimate suggests that over the pre and post-alliance periods, the mean level of utility decreases for non-DNC products. The variable *DNC_demand* is a dummy variable that equals to one for all products where the ticketing carrier is either Delta, Northwest or Continental. The negative coefficient estimate suggests that, throughout the entire sample period, DNC products are associated with a lower mean utility level relative to non-DNC products.

The coefficient of the interaction variable, *Post Alliance* × *DNC_demand*, captures how consumers’ utility change differently for DNC products relative to non-DNC products over the pre and post-alliance periods. While the coefficient estimate is positive, it is not statistically significant, suggesting that, on average, mean utility obtained from DNC products did not change differently relative to change in mean utility of non-DNC products over the pre-post alliance period.
Our demand model yields a mean own-price elasticity estimate of -1.3. A reasonable range for own-price elasticity in the airline industry is from -1.2 to -2.0 as pointed out by Oum, Gillen and Noble (1986), and Brander and Zhang (1990). Berry and Jia (2010) in their 2006 sample find own-price elasticity estimates ranging from -1.89 to -2.10, while Gayle and Wu (2012) estimates range from -1.65 to -2.39. Even though our demand model seems to produce a relatively low mean own-price elasticity, we believe that it is reasonable and consistent with the existing literature.

7.2 Computed Product Markups, Marginal Costs, and Variable Profits

Summary statistics on price, markup, marginal cost, and the number of passengers per product are computed for each airline. The overall mean product price and markup are $163.92 and $132.83, respectively. The Lerner index—a measure of the product markup as a percentage of price—indicates that overall, airlines are able to raise their price above marginal costs by a mean of 89.85%. Mean marginal cost is $31.09. Even though this level of markup over marginal cost seems high, it is necessary for their overall profitability because the airline industry has relatively high fixed costs.

Quarterly market-level variable profits for each airline are computed using equations (9) and (11) along with the demand estimates. Recall that the original database, before any cleaning, is only a 10% sample of air travel tickets sold. This implies that the magnitudes of variable profit estimates are at most roughly 10% of actual variable profits. Overall median quarterly market-level variable profit for an airline is approximately $43,810. The quarterly median market-level variable profit for Delta and Northwest is approximately $37,000, while Continental is a little higher, almost $45,000.

7.3 Results from Estimation of Product Markup Function

Table 7 shows estimation results for a reduced-form product markup equation. Here, we examine whether markup for DNC products changes differently compared to markup for non-DNC products due to formation of the DNC alliance. The sign and magnitude of the coefficient on Post Alliance × DNC_demand suggests that even though the formation of the DNC alliance has a negative effect on the three partner carriers product markup compared to their competitors, the reduction in markup is quite small, only about 38 cents reduction. So there is no evidence
that implementation of the DNC alliance increased market power of the three alliance partners [Gayle and Brown (2013)].

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Alliance</td>
<td>0.1242*</td>
<td>0.0647</td>
</tr>
<tr>
<td>DNC_demand</td>
<td>-1.1932***</td>
<td>0.1145</td>
</tr>
<tr>
<td>Post Alliance × DNC_demand</td>
<td>-0.3808***</td>
<td>0.1020</td>
</tr>
<tr>
<td>Opres_demand</td>
<td>0.1174***</td>
<td>0.0012</td>
</tr>
<tr>
<td>Interstop</td>
<td>-0.4976***</td>
<td>0.0617</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>-0.8920***</td>
<td>0.2369</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>-1.800***</td>
<td>0.1550</td>
</tr>
<tr>
<td>Constant</td>
<td>128.6452***</td>
<td>0.3098</td>
</tr>
<tr>
<td>Ticketing carrier effects</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Market Origin effects</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Market Destination effects</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Quarter effects</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

*, *** indicate statistical significance at the 10% and 1% levels respectively. Equation is estimated using ordinary least squares.

All other control variables in Table 7 have the expected sign. First, the positive coefficient estimate on the Opres_demand variable suggests that the size of an airlines’ presence at the origin airport of a market is positively related to markup. This evidence is suggestive of the existence of a hub premium, i.e., airlines have higher market power at their hub airports and thus are able to charge higher markups on flights out of their hub airports [Borenstein (1989)]. Second, we know from our demand results that passengers prefer nonstop flights to their destinations. Therefore, we expect products with intermediate stops have lower markup, as indicated by the negative coefficient estimate on the Interstop variable in Table 7. Finally, our demand results suggest that traditional and virtual codeshare products are less preferred to pure online products. Therefore, it is not surprising that codeshare products have lower markup compare to pure online products, as indicated by the negative coefficient estimates on Traditional Codeshare and Virtual Codeshare variables in Table 7.
7.4 Results from Estimation of Marginal Cost Function

Table 8 presents estimation results for two marginal cost specifications, labeled in columns of the table as Specification 1 and Specification 2, respectively. The two specifications help us better assess how the size of market endpoint presence of the alliance partners might affect marginal cost effects of the alliance. By using variables $Opres_{cost}$ and $Dpres_{cost}$, we are able to capture the marginal cost effects of an airline’s scale of operation or “hub-size” at the respective origin and destination airports of the market. We anticipate that these variables will reveal the forces of economies of passenger-traffic density that an airline can enjoy as the airline is likely to channel higher volumes of passengers through the market due to its large presence at the market’s endpoints. As expected, the sign pattern of these variables and their squares suggest that a carrier's marginal cost initially increases with the size of its presence at the market endpoints, but once its presence increases beyond a certain threshold, the carrier's marginal cost declines with further increases in its presence at the market endpoints. This result suggests that economies of passenger-traffic density can be achieved by an airline.

How “big” should the hub-size be before an airline is able to enjoy economies of passenger-traffic density? The magnitude of the coefficient estimates on $Opres_{cost}$ and $(Opres_{cost})^2$ suggest that an airline can enjoy economies of passenger-traffic density within the market if the number of different cities that an airline has nonstop flights from going into the origin city of the market exceeds 453. Similarly, the coefficient estimates on $Dpres_{cost}$ and $(Dpres_{cost})^2$ suggest that an airline has to provide nonstop service to more than 301 different cities from the destination city of the market before it can enjoy economies of passenger-traffic density within the market. The “slight” problem is that a single airline typically does not connect that many different cities to the market endpoints via nonstop flights. In our sample, the mean number of different cities an airline connects to a given market endpoint using nonstop flights is 28 and a maximum of 145.

Still focusing on the estimates in Specification 1, the negative coefficient estimate on Post Alliance suggests that marginal cost of products that are not associated with Delta, Northwest or Continental declined (by $11.34) over the pre-post DNC alliance periods. However, the negative coefficient estimate on $DNC_{mc_{jmt}}$ suggests that, over the entire sample period, the marginal cost of products offered by Delta, Northwest or Continental is on average lower ($13.64 lower) than that of products offered by other airlines. An unexpected result is that
the coefficient estimate on the interaction variable $Post\ Alliance_t \times DNC_{mc_{jmt}}$ is positive. The fact that the positive coefficient estimate on $Post\ Alliance_t \times DNC_{mc_{jmt}}$ (2.66) is not large enough to outweigh the negative coefficient estimate on $Post\ Alliance_t$ (-11.34), this suggests that over the pre-post alliance periods the marginal cost of products offered by Delta, Northwest or Continental declined, but did not decline as much as the decline in marginal cost of products offered by other airlines. This result surprisingly suggests that the alliance attenuated an apparent industry-wide decline in marginal cost for the partner carriers’ rather than precipitated the decline.

In Specification 2 of the marginal cost function we added three-way interaction variables, $Post\ Alliance_t \times DNC_{mc_{jmt}} \times Opr_{es\ cost_{jmt}}$ and $Post\ Alliance_t \times DNC_{mc_{jmt}} \times Dpr_{es\ cost_{jmt}}$. The coefficient estimates on these variables are negative, suggesting that implementation of the alliance may have precipitated a decline in marginal cost for the partner carriers in some markets. In particular, the alliance seems to precipitate a decline in the partner carriers’ marginal cost in markets where they have sufficiently large hub-size presence at the origin or destination airports of the relevant market. The magnitudes of the coefficient estimates on three-way interaction variables relative to the coefficient estimate on $Post\ Alliance_t \times DNC_{mc_{jmt}}$, suggest that the alliance will precipitate the decline in the partners’ marginal cost in markets where the partners provide nonstop service from more than 75 ($= 14.38/0.19$) different cities going into the market origin airport, or more than 68 ($= 14.38/0.21$) different cities via nonstop flights from the destination airport.

The endpoint airport hub-size thresholds are satisfied by each of the three partner carriers at several airports during the post-alliance period. For Delta, Atlanta Hartsfield-Jackson (ATL) and Cincinnati (CVG) satisfy both market origin and destination thresholds, while Dallas/Fort-Worth (DFW) International Airport satisfies the market destination threshold. For Northwest, Detroit Metropolitan (DTW), Memphis (MEM), and Minneapolis–Saint Paul International (MSP) satisfy both thresholds, while the destination threshold is satisfied at George Bush Intercontinental (IAH). Finally, for Continental, Cleveland Hopkins (CLE), Ellington International (EFD), Newark Liberty (EWR), George Bush Intercontinental (IAH), LaGuardia (LGA), William Hobby Airport (HOU), and John F. Kennedy (JFK) satisfy both thresholds.

12 Marginal cost of Delta, Northwest and Continental products declined by $8.68 (= $11.34 - $2.66), while the marginal cost of products offered by other airlines declined by $11.34.
Table 8
Marginal Cost Function Estimation
152,983 observations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Specification 1</th>
<th>Specification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opres_cost</td>
<td>0.5440*** (0.0242)</td>
<td>0.5129*** (0.0242)</td>
</tr>
<tr>
<td>(Opres_cost)^2</td>
<td>-0.0006*** (0.0002)</td>
<td>0.00002 (0.0002)</td>
</tr>
<tr>
<td>Dpres_cost</td>
<td>0.6025*** (0.0233)</td>
<td>0.5663*** (0.0232)</td>
</tr>
<tr>
<td>(Dpres_cost)^2</td>
<td>-0.0010*** (0.0002)</td>
<td>-0.00002 (0.0002)</td>
</tr>
<tr>
<td>Post Alliance</td>
<td>-11.34*** (0.3314)</td>
<td>-11.37*** (0.3311)</td>
</tr>
<tr>
<td>DNC_mc</td>
<td>-13.64*** (0.5077)</td>
<td>-14.22*** (0.5052)</td>
</tr>
<tr>
<td>Post Alliance × DNC_mc</td>
<td>2.66*** (0.5480)</td>
<td>14.38*** (0.7616)</td>
</tr>
<tr>
<td>Post Alliance × DNC_mc × Opres_cost</td>
<td>---</td>
<td>-0.1907*** (0.0164)</td>
</tr>
<tr>
<td>Post Alliance × DNC_mc × Dpres_cost</td>
<td>---</td>
<td>-0.2077*** (0.0003)</td>
</tr>
<tr>
<td>Itinerary distance flown (miles)</td>
<td>0.0380*** (0.0003)</td>
<td>0.0378*** (0.0003)</td>
</tr>
<tr>
<td>Codeshare product</td>
<td>-12.43*** (0.8290)</td>
<td>-12.35*** (0.8304)</td>
</tr>
<tr>
<td>Constant</td>
<td>-29.72*** (1.3855)</td>
<td>-30.37*** (1.3852)</td>
</tr>
</tbody>
</table>

Operating carrier/group effects YES
Market Origin effects YES
Market Destination effects YES
Quarter effects YES
R-squared 0.2860 0.2886

*** indicates statistical significance at the 1% level. Equations are estimated using ordinary least squares.

The crucial “take-away” result to note here is that the alliance enables the partner carriers to achieve economies of passenger-traffic density that might not be otherwise achievable. Recall that Specification 1 of the marginal cost function suggests that the hub-size threshold required for a single carrier to achieve economies of passenger-traffic density was well beyond the hub-size of a typical carrier. However, the results in Specification 2 suggest that once the carrier
belongs to an alliance, then the hub-size threshold needed to exploit economies of passenger-
traffic density is significantly less, and achievable. These findings fit squarely with our
expectation of how an alliance may influence marginal cost via economies of passenger-traffic
density.

In terms of the remaining regressors, *Itinerary Distance Flown* measures the number of
miles flown from the origin to destination city. The coefficient is positive as expected,
suggesting that itinerary distance positively impact marginal cost. The variable *Codeshare
Product* is a dummy variable that equals to one if the product is either traditional or virtual
codeshare. The coefficient estimate suggests that the marginal cost of offering a codeshare
product is on average $12.35 less than offering a pure online product.

7.5 Results from Estimation of Reduced-form Price Regression

Since standard oligopoly theory predicts that equilibrium price is equal to marginal cost
plus markup, this implies that changes in markup and marginal cost should be reflected in price.
An advantage of directly using a reduced-form price regression is that it does not embed the
strong assumptions required for a structural model. Of course, the strong assumptions of the
structural model buy us the advantage of being able to separately analyze markup and marginal
cost. So both approaches, reduced-form versus structural, have advantages and disadvantages.
In an attempt to exploit the advantages of both approaches, we now estimate a simple reduced-
form price regression to achieve two objectives: (i) provide a useful rough “reality check” on
inferences already drawn from the structural model; and (ii) provide extra economic insights on
the relative magnitudes of markup versus marginal cost effects.

Table 9 shows estimation results for a reduced-form price regression. The negative
coefficient estimate on *Post Alliance* suggests that prices of non-DNC products decrease over
the pre-post alliance periods. Results from our structural analysis suggest that, over the pre-post
alliance periods, the markup of non-DNC products increase, but their marginal cost decrease.
The fact that the reduced-form price regression reveals that price of non-DNC products decrease
over the pre-post alliance periods, we can infer that the decrease in marginal cost outweigh the
increase in markup for these products.
Table 9
Estimation Results for Reduced-form Price Regression

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opres_cost</td>
<td>0.5202***</td>
<td>0.0231</td>
</tr>
<tr>
<td>(Opres_cost)^2</td>
<td>0.0011***</td>
<td>0.0002</td>
</tr>
<tr>
<td>Dpres_cost</td>
<td>0.5638***</td>
<td>0.0002</td>
</tr>
<tr>
<td>(Dpres_cost)^2</td>
<td>0.0008***</td>
<td>0.0002</td>
</tr>
<tr>
<td>Post Alliance</td>
<td>-11.38***</td>
<td>0.3252</td>
</tr>
<tr>
<td>DNC_mc</td>
<td>-15.25***</td>
<td>0.5024</td>
</tr>
<tr>
<td>Post Alliance × DNC_mc</td>
<td>14.50***</td>
<td>0.7325</td>
</tr>
<tr>
<td>Post Alliance × DNC_mc × Opres_cost</td>
<td>-0.2018***</td>
<td>0.0152</td>
</tr>
<tr>
<td>Post Alliance × DNC_mc × Dpres_cost</td>
<td>-0.2188***</td>
<td>0.0152</td>
</tr>
<tr>
<td>Itinerary distance flown (miles)</td>
<td>0.0354***</td>
<td>0.0003</td>
</tr>
<tr>
<td>Interstop</td>
<td>-1.85***</td>
<td>0.4064</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>-6.19*</td>
<td>3.618</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>-15.41***</td>
<td>0.8113</td>
</tr>
<tr>
<td>Constant</td>
<td>104.36***</td>
<td>1.418</td>
</tr>
</tbody>
</table>

Operating carrier/group effects: YES
Market Origin effects: YES
Market Destination effects: YES
Quarter effects: YES
R-squared: 0.3090

***, * indicate statistical significance at the 1% and 10% levels respectively. Equation is estimated using ordinary least squares.

The negative coefficient estimate on the variable DNC_mc in the reduced-form price regression suggests that, on average, DNC products have lower prices relative to non-DNC prices. The joint results from the reduced-form price regression and the structural analysis therefore imply that DNC products have lower price than non-DNC products due to DNC products having both lower markup and lower marginal cost.

The sign pattern of coefficient estimates on interaction variables, $Post\ Alliance_t \times DNC_mc_{jmt}$, $Post\ Alliance_t \times DNC_mc_{jmt} \times Opres_{jmt}$, and $Post\ Alliance_t \times DNC_mc_{jmt} \times Dpres_{jmt}$ in the reduced-form price regression suggest that implementation of the alliance precipitated a decline in the partner carriers’ price only in markets where they have sufficiently large hub-size presence at the origin or destination airports of the relevant market. We now see that such price changes reflect changes in the partner carriers’ marginal cost, and therefore likely driven by alliance partners being better able to exploit economies of passenger-traffic density.
As expected, distance has a positive effect on price. For every 100 miles increase in itinerary distance the price increases by $3.54. Since passengers prefer nonstop products, prices are lower for products with more intermediate stops. Codeshare products (traditional and virtual) are also priced lower because these products are seen as inferior compared to pure online products.

8. Estimation of Dynamic Entry/Exit Game

Consider the following pseudo log likelihood function:

\[
Q(\theta, \mathcal{P}) = \sum_{m=1}^{M} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\{ a_{int} \ln \Psi (Z_{int}^\mathcal{P} \theta + \hat{e}_{int}^\mathcal{P}) + (1 - a_{int}) \ln \Psi (-Z_{int}^\mathcal{P} \theta - \hat{e}_{int}^\mathcal{P}) \right\},
\]

where \(Q(\theta, \mathcal{P}) \) is called the “pseudo” log likelihood function because players’ conditional choice probabilities (CCPs) in vector \(\mathcal{P} \) are arbitrary and do not represent the equilibrium probabilities associated with parameter vector \(\theta \) implied by the model. Recall that \(\theta \) represents the vector of parameters in the fixed and entry cost functions.

We begin by implementing a two-step pseudo maximum likelihood estimator (PML). The first step involves estimating the relevant state transition equations and obtaining nonparametric estimates of the choice probabilities, \(\mathcal{P}_0 \). Nonparametric estimates of choice probabilities allow us to construct consistent estimates of \(Z_{int}^\mathcal{P}_0 \) and \(\hat{e}_{int}^\mathcal{P}_0 \). Appendix B describes construction of \(Z_{int}^\mathcal{P}_0 \) and \(\hat{e}_{int}^\mathcal{P}_0 \). With \(Z_{int}^\mathcal{P}_0 \) and \(\hat{e}_{int}^\mathcal{P}_0 \) in hand, we can construct the pseudo log likelihood function, \(Q(\theta, \mathcal{P}_0) \).

In the second step, we estimate the vector of parameters by solving the following problem:

\[
\hat{\theta}_{PML} = \arg \max_{\theta} Q(\theta, \mathcal{P}_0),
\]

where \(\hat{\theta}_{PML} \) is the two-step pseudo maximum likelihood estimator (PML). The computation in the second step is simple as it only involves estimation of a standard discrete choice model. The main advantage of the two-step estimator is its computational simplicity because it does not require solving for an equilibrium in the dynamic game, which greatly reduces the computational
burden. However, as discussed in Aguirregabiria and Mira (2007), the two-step PML estimator may have large finite sample bias. One reason for the bias is that the nonparametric probabilities, \hat{P}_0, enter nonlinearly in the sample objective function that defines the estimator, and the expected value of a nonlinear function of \hat{P}_0 is not equal to that function evaluated at the expected value of \hat{P}_0. Second, the nonparametric probability estimates themselves can have large finite sample bias, which in turn causes bias in the PML estimator. These potential problems with the PML estimator lead us to implement the Nested Pseudo Likelihood (NPL) estimator proposed by Aguirregabiria and Mira (2002, 2007). In Appendix C we provide more discussion on implementing the NPL estimator.

9. Results from Estimation of Fixed and Entry Cost Functions

Table 10 presents estimation results for the recurrent fixed and sunk market entry cost functions. We are better able to identify the coefficients in the entry cost function than the coefficients in the fixed cost function. In the fixed cost function, the parameters that measure mean fixed cost and the coefficient on the size of an airline’s airport presence are unreasonably small and not precisely estimated. We expected the coefficient estimate associated with airport presence to be positive, suggesting that fixed cost increases with the size of an airline’s operation at an airport. As the scale of operation increases, fixed expenses such as the addition of gates and facilities should be higher.

The negative fixed cost coefficient on the dummy variable $\text{Alliance}_{Firm_{int}}$ suggests that the alliance partner carriers have a lower mean fixed cost relative to the mean fixed cost of other airlines over the pre and post-alliance periods. For a typical origin-destination market, the mean quarterly fixed cost of Delta, Northwest and Continental is approximately $15,400 lower than the mean quarterly fixed cost across other airlines.

The coefficient on the variable $\text{Post}_{Alliance}_{Period_t}$ in the fixed cost function measures how the fixed cost of airlines that are not Delta, Northwest or Continental changes over the pre and post-alliance periods. Since this coefficient estimate is not statistically different from zero, it suggests that non-DNC airlines’ fixed cost does not change between the pre and post-alliance periods.
The coefficient of primary interest is on the interaction variable \(Post_\text{Alliance_Period}_t \times \text{Alliance_Firm}_{int}\) because it measures how the fixed cost of partner carriers in the DNC alliance changes relative to other airlines between the pre and post-alliance periods. Therefore, it captures fixed cost effects associated with formation of the alliance. Interestingly, the coefficient estimate is positive and statistically significant, suggesting that the formation of the DNC alliance has resulted in higher recurrent fixed costs for the alliance partners. In a typical origin-destination market, the DNC alliance is associated with an increase in partner carriers’ quarterly fixed cost by an average of $9,907. As we previously suggested, the alliance is likely to increase the volume of passengers that travel on each partner carriers’ network. Accommodating a higher volume of passengers may require partner carriers to acquire more airport gates and a larger airport staff to handle more intensive airport operations. This could be a reason for the increase in partners’ recurrent fixed cost.

We now turn to discussing results for the entry cost function. Recall that entry cost is the one-time sunk cost that an airline incurs if it wants to begin offering service in a market. The mean one-time market entry cost is estimated to be $33,318. As previously computed from the
Nash price-setting equilibrium part of the model, overall median quarterly market-level variable profit of an airline is $43,810. Therefore, the one-time mean entry cost is more than 75 percent of median quarterly variable profit.

The coefficient estimate on the size of market endpoint airport presence is negative as expected, suggesting that an airline’s market entry cost decreases as size of the airline’s presence at the endpoint airports increases. This result is consistent with much of the airline literature that discusses the determinants of market entry [for example see Berry (1992) and Goolsbee and Syverson (2008)].

The positive coefficient estimate on the dummy variable $Alliance_{Firm_{int}}$ suggests that for a typical origin-destination market, the mean entry cost for Delta, Northwest, and Continental is higher than the mean entry cost of other airlines by $13,000. The coefficient on $Post_{Alliance_{Period}}$ dummy variable in the entry cost function measures how the market entry cost of other airlines—airlines that are not Delta, Northwest or Continental—change between the pre and post-alliance periods. The coefficient estimate on this variable suggests that their market entry costs decreased about $9,634 between the pre and post-alliance periods.

The variable of primary interest in the entry cost function is $Post_{Alliance_{Period}} \times Alliance_{Firm_{int}}$, as the coefficient on this interaction variable measures if entry cost changes differently for the alliance partners relative to other carriers over the pre and post-alliance periods. Essentially, this interaction variable allows us to measure whether entry cost savings are associated with the alliance. The negative coefficient estimate on this variable suggests that the DNC alliance has resulted in a decrease of the market entry costs for the alliance partners relative to other airlines. The partner carriers’ market entry cost decrease, on average, by an additional $7,494 due to the alliance. As we previously discussed in the introduction of the paper, an alliance effectively allows an airline to enter several new origin-destination markets more cheaply by leveraging its partners’ network rather than having to exclusively use its own planes to enter these markets. So our empirical finding of market entry cost savings for partner carriers is consistent with our expectation. We are unaware of any other paper in the literature that has shown evidence of entry cost savings associated with an alliance.

In sum, we find that although the formation of the DNC codeshare alliance has decreased one-time sunk market entry costs for the alliance partners, their recurrent market fixed costs increased.
10. Concluding Remarks

The literature on codeshare alliances is extensive. But an important aspect of codeshare alliances that has received little empirical analysis is their effect on partner airlines’ cost, perhaps due to the difficulty of obtaining cost data at the route-level. The studies that have examine cost effects use aggregate measures of cost that do not distinguish between marginal, recurrent fixed, and sunk market entry costs, which makes it difficult to infer implications for short-run price changes versus medium to long-run market structure changes. For example, while changes in marginal cost more quickly influence short-run equilibrium pricing, changes in recurrent fixed cost and sunk market entry cost will influence the ease with which alliance partners can enter new markets in the medium to long-run. Furthermore, since an alliance may differentially affect different components of cost, the use of aggregated cost data can cause researchers to mistakenly find that alliances have very little impact on airlines' costs.

Our study sets out to address the above-mentioned shortcomings in the existing literature by empirically estimating marginal, recurrent fixed, and sunk market entry costs effects associated with an airline alliance using a structural econometric model that does not require the researcher to have cost data. Therefore, our study offers two crucial distinguishing features from others in the literature. First, our methodology does not require having actual cost data to draw inference on changes in cost associated with an alliance. Second, our methodology separately identifies changes in economically relevant components of cost associated with an alliance.

Our empirical results suggest that implementation of the Delta-Northwest-Continental alliance resulted in: (1) A decrease in marginal costs for the alliance partners in markets where the airlines have a large presence at their market endpoints; (2) It reduces sunk market entry costs for the alliance partners; and (3) The alliance however is associated with higher recurrent fixed costs for the partners. It is interesting that we find that the partners’ recurrent fixed costs are higher following implementation of the DNC alliance. Perhaps it is true that the overall effect on cost is small since higher recurrent fixed costs may negate some of the savings from reductions in marginal and sunk market entry costs. But the broader, and conceivably more important, point is that an alliance does influence partner airlines’ cost components differentially, and each of these cost components may have different implications for short-run versus medium to long-run equilibrium market effects.
Appendix A: Transition Rules for State Variables

The vector of state variables: $y_t = \{s_{it}, R_{it}^*, Presence_{imt}, Post_Alliance_Period_t\}$. The following are the state transition equations:

$$s_{it+1} = a_{it}, \quad \text{(A1)}$$

$$R_{it+1}^* = a_{it} (\alpha_0^R + \alpha_1^R R_{it}^* + \xi_{it}^R), \quad \text{(A2)}$$

$$Presence_{it+1} = \alpha_0^{pres} + \alpha_1^{pres} Presence_{it} + \xi_{it}^{pres}. \quad \text{(A3)}$$

Variable profit and airline presence follow an exogenous Markov process with probability distribution $F_{\xi_{it}^R}$ and $F_{\xi_{it}^{pres}}$, respectively, that we assume to be normally distributed.

We assume that the probability that next period (t+1) is a post-alliance period for the relevant alliance being studied is exogenously determined by information firms have about the current state. Furthermore, we assume that the parametric probability distribution governing this process is normal, which implies the following probit model:

$$\Pr (Post_Alliance_Period_{t+1} = 1|y_t) = \Phi(\alpha_0^T + \alpha_1^T s_{it} + \alpha_2^T R_{it}^* + \alpha_3^T Presence_{it}) \quad \text{(A4)}$$

Appendix B: Representation of Markov Perfect Equilibrium (MPE) using Conditional Choice Probabilities (CCPs)

Recall that the per-period profit function is given as:

$$\Pi_{imt}(a_{it}, y_t) = R_{imt}^* - a_{imt}(F_{C_{imt}} + (1 - s_{imt})E_{C_{imt}}),$$

which implies that,

$$\Pi_{imt}(0, y_t) = R_{imt}^*, \quad \text{(B1)}$$

$$\Pi_{imt}(1, y_t) = R_{imt}^* - F_{C_{imt}} - (1 - s_{imt})E_{C_{imt}}. \quad \text{(B2)}$$

Let

$$z_{imt}(0, y_t) = \{R_{imt}^*, 0, 0, 0, 0, 0, 0, 0, 0, 0\}, \quad \text{(B3)}$$
\[z_{int}(1, y_t) = \{ R_{int}^*, -1, -\text{Presence}_{int}, -\text{Post}_t \times \text{Alliance}_{int}, -(1 - s_{int}), \]
\[-\text{Presence}_{int}, -(1 - s_{int})\text{Post}_t, -(1 - s_{int})\text{Alliance}_{int}, -(1 - s_{int})\text{Post}_t \times \text{Alliance}_{int} \}, \]
(B4)

and
\[\theta = \{ 1, \theta_0^{FC}, \theta_1^{FC}, \theta_2^{FC}, \theta_3^{FC}, \theta_4^{EC}, \theta_0^{EC}, \theta_1^{EC}, \theta_2^{EC}, \theta_3^{EC}, \theta_4^{EC} \}' . \]
(B5)

Therefore, we can rewrite the per-period profit function as:
\[\Pi_{int}(0, y_t) = z_{int}(0, y_t) \times \theta , \]
(B6)
\[\Pi_{int}(1, y_t) = z_{int}(1, y_t) \times \theta . \]
(B7)

A MPE can also be represented as a vector of conditional choice probabilities (CCPs) that solves the fixed point problem
\[\mathbf{P} = \Psi(\theta, \mathbf{P}) , \]
where
\[\mathbf{P} = \{ P_i(y) : \text{for every firm and state } (i, y) \} . \]

\[\mathbf{P} = \Psi(\theta, \mathbf{P}) \] is a vector of best response probability mapping:
\[\left\{ \mathbf{P} \left(Z_i^P(y) \frac{\theta}{\sigma} + \tilde{e}_i^P(y) \right) : \text{for every firm and state } (i, y) \right\} , \]
(B8)

where \(\Psi(\cdot) \) is the CDF of the type 1 extreme value distribution, and
\[\tilde{Z}_i^P(y) = Z_i(1, y_t) - Z_i(0, y_t) + \beta [F_{iy}^P(1) - F_{iy}^P(0)] \times W_{z,i}^P , \]
(B9)
\[\tilde{e}_i^P(y) = \beta [F_{iy}^P(1) - F_{iy}^P(0)] \times W_{e,i}^P , \]
(B10)
\[W_{z,i}^P = (I - \beta \cdot \tilde{F}_{iy})^{-1} \times [P_i(y) \times Z_i(1, y) + (1 - P_i(y)) \times Z_i(0, y)] , \]
(B11)
\[W_{e,i}^P = (I - \beta \cdot \tilde{F}_{iy})^{-1} \times [P_i(y) \times e_i^P] , \]
(B12)
\[\tilde{F}_{iy} = [(P_i(y) \times 1_M') \times F_{iy}^P(1) + (1 - P_i(y)) \times 1_M'] \times F_{iy}^P(0) , \]
(B13)

where \(F_{iy}^P(0) \) and \(F_{iy}^P(1) \) are state transition probability matrices for \(a_{it} = 0 \) and \(a_{it} = 1 \) respectively; while \(W_{z,i}^P \) and \(W_{e,i}^P \) are vectors of valuations that depend on CCPs and transition probabilities, but not on the dynamic parameters being estimated. Since \(\varepsilon_{it} \) is assumed to be distributed extreme value type 1, \(e_i^P(P_i(y)) = \gamma - \ln(P_i(y)) \), where \(\gamma = 0.577215665 \) is Euler’s constant.
Appendix C: Implementing the Nested Pseudo Likelihood (NPL) Estimator

Aguirregabiria and Mira (2002, 2007) consider a recursive K-step extension of the two-step PML estimator, which they refer to as the NPL estimator. Since we have the two-step estimator $\hat{\theta}_{PML}$ and the initial nonparametric estimates of CCPs, \hat{P}_0, we can construct new CCP estimates, \hat{P}_1, using the best response CCPs equation:

$$\hat{P}_1 = \Psi(\hat{P}_0, \hat{\theta}_{PML}).$$ \hspace{1cm} (C1)

We then solve the pseudo log likelihood function again using \hat{P}_1 instead of \hat{P}_0 to obtain new estimates for θ, that is, we solve: $\hat{\theta}_2 = \arg\max_\theta Q(\theta, \hat{P}_1)$. We again construct new CCP estimates, \hat{P}_2, using: $\hat{P}_2 = \Psi(\hat{P}_1, \hat{\theta}_2)$. This process is repeated K times:

$$\hat{\theta}_K = \arg\max_\theta Q(\theta, \hat{P}_{K-1})$$ \hspace{1cm} (C2)

and

$$\hat{P}_K = \Psi(\hat{P}_{K-1}, \hat{\theta}_K),$$ \hspace{1cm} (C3)

where on the K^{th} iteration the choice probability vector \hat{P}_K is sufficiently close to \hat{P}_{K-1} based on a tolerance level that we chose. The result is an NPL fixed point, which can be defined as a pair (θ, P) where θ maximizes the pseudo likelihood function, and P is an equilibrium probability vector associated with θ. Aguirregabiria and Mira (2002, 2007) argue that the NPL algorithm significantly reduces the bias of the two-step PML estimator.

References

Gayle, Philip G. and Chi-Yin Wu (2012). “Are Air Travel Markets Segmented Along the Lines of Nonstop versus Intermediate-stop(s) Products?” *Manuscript, Kansas State University*.

