Entry Deterrence and Strategic Alliances

Philip G. Gayle* and Xin Xie**

This Draft: February 14, 2014

First Draft: September 20, 2012

Abstract

Researchers have written extensively on the impact that strategic alliances between airlines have on airfare, but little is known of the market entry deterrent impact of strategic alliances. Using a structural econometric model, this paper examines the market entry deterrent impact of codesharing, a form of strategic alliance, between incumbent carriers in domestic air travel markets. We find that a specific type of codesharing between market incumbents has a market entry deterrent effect to Southwest Airlines, but not other potential entrants. We quantify the extent to which market incumbents’ codesharing influences market entry cost of potential entrants.

Keywords: Entry Deterrence; Strategic Alliances; Dynamic Entry/Exit Model; Airline Competition

JEL Classification codes: L13, L93

Acknowledgements: For very helpful comments and suggestions we thank Dennis Weisman, Myongjin Kim, Anson Ho, Leilei Shen, Philippe Belly, Peri da Silva, Yongmin Chen, Robert McNown, Charles de Bartolomé, Scott Savage, Jin-Hyuk Kim, Carlos Martins-Filho, George-Levi Gayle, Joseph Cullen, Glenn MacDonald, Maher Said, Bart Hamilton, and participants at the Econometric Society session on “Industrial Organization: Theory and Applications” at the January 2014 Allied Social Science Associations (ASSA) meetings. Any remaining errors are our own.

*Kansas State University, Department of Economics, 320 Waters Hall, Manhattan, KS 66506; Voice: (785) 532-4581; Fax: (785) 532-6919; email: gaylep@ksu.edu; Corresponding author.

**Kansas State University, Department of Economics, 327 Waters Hall, Manhattan, KS 66506; email: xiexin@k-state.edu.
1. Introduction

In recent years, strategic alliances between airlines have become increasingly popular. The format of a strategic alliance between airlines can vary from a limited marketing arrangement, for example an arrangement between partner carriers that only makes their frequent-flyer programs reciprocal, to more extensive arrangements that include reciprocal frequent-flier programs as well as codesharing. Reciprocal frequent-flyer programs effectively allow passengers that hold frequent-flyer membership with one carrier in the alliance to earn and redeem frequent-flyer points across any partner carrier in the alliance. A codeshare arrangement effectively allows each carrier in the alliance to sell tickets for seats on its partners’ airplane, i.e., partners essentially share certain facilities, in this case airplanes, that are solely owned by one of the partners.

Researchers have written extensively on the impact that strategic alliances have on airfare [Brueckner and Whalen (2000); Brueckner (2001 and 2003); Bamberger, Carlton and Neumann (2004); Ito and Lee (2007); Gayle (2008 and 2013); Gayle and Brown (2012) among others]. However, there is a paucity of work that examines the impact that strategic alliances may have on deterring potential competitors from entering a relevant market. This is a particularly interesting aspect of strategic alliances to study since a substantial amount of these alliances are formed between traditional major/legacy carriers, who may face increasingly stiff competition from the growing prominence of low-cost-carriers (LCCs). Some researchers argue that hub-and-spoke network carriers form and use strategic codeshare alliances to better compete with low-cost-carriers, [Mantovani and Tarola (2007)]. So the following series of relevant questions need careful study. First, does the evidence support the argument that strategic alliances between major airlines, among achieving other goals, serve to deter entry of potential entrants to a relevant market? Second, if an entry-deterrence effect is evident, is there a particular type of practice among alliance partners that is most effective at deterring

1 Membership in an airline’s frequent-flyer program allows the passenger to accumulate points each time the passenger flies on the airline. The frequent-flyer program allows the passenger to be eligible for various rewards once the passenger accumulates points beyond certain pre-determine thresholds. As such, frequent-flyer programs are designed to build customer loyalty to the carrier that offers the program.

2 Earlier contributions to this literature include: Oum and Park (1997); Park (1997); Park and Zhang (1998); and Park and Zhang (2000).
entry? Third, is there a particular type of airline that seems to be more deterred via such practice by alliance partners? 3

Chen and Ross (2000) theoretically explore the anticompetitive effect of a particular type of strategic alliance, by which the partner airlines share important facilities such as airplanes, terminals etc. They argue that this type of alliance can forestall a complete and competitive entry by another firm, that is, such alliances can have an entry-deterrent effect. The mechanism through which Chen and Ross envisioned that a strategic alliance may deter a complete and competitive entry is as follows. An incumbent offers to form a strategic alliance with a potential entrant, which takes the form of the incumbent willing to share its facility with the potential entrant in order to discourage the potential entrant from building its own facility and entering on a larger, more competitive scale. In the context of a codeshare alliance, this would translate into the incumbent offering to let a potential entrant sell tickets for seats on the incumbent’s plane in order to discourage the potential entrant from putting its own plane on the route. So based on Chen and Ross’s argument, entry-deterrent codesharing should primarily take place between a market incumbent and the potential entrant the incumbent is intending to deter.

Lin (2005) uses a theoretical model to show that incumbents can use codeshare alliances as a credible threat to deter the entry of potential entrants who do not have significant cost advantage. The author uses the model to show that, owing to joint profit maximizing behavior between allied airlines, there exists an equilibrium in which the joint profit of two allied airlines is higher than the sum of their individual profits if they were not allied. In addition, this higher joint profit of the allied airlines comes at the expense of lower profit for a new non-allied entrant. This equilibrium implies that if market entry cost is sufficiently high, such that entry in the presence of an alliance between market incumbents is unprofitable for the new non-allied entrant, but profitable if incumbents were not allied, then formation of the alliance can be done to strategically

3 In a separate, but related airline entry-deterrence literature, Oum, Zhang and Zhang (1995); Hendricks, Piccione and Tan (1997); Berechman, Poddar and Shy (1998); Aguirregabiria and Ho (2010) among others have argued that hub-and-spoke route networks adopted by many legacy carriers do give these carriers an incentive and the ability to deter entry of other carriers that do not use hub-and-spoke route network, which include many low-cost-carriers. But this literature focuses on the entry deterrence effect of hub-and-spoke networks rather than more specifically on the entry deterrence effect of codeshare alliances.
In addition to Chen and Ross (2000) and Lin (2005) arguments why codeshare alliances may deter entry, we posit yet another mechanism through which a codeshare alliance may deter potential entrants from entering a market. The idea is that codeshare partner carriers typically make their frequent-flyer programs reciprocal. This has the effect of making frequent-flyer membership of each partner carrier more valuable to customers due to the increased opportunities for customers to accumulate and redeem frequent-flyer miles across partner carriers. In other words, the alliance partners’ loyal-customer base in a market is likely to expand with a codeshare alliance. Consistent with this argument, Lederman (2007) provides econometric evidence suggesting that enhancements to frequent-flyer partnerships are associated with increased demand for partners’ air travel services. An increase in alliance partners’ loyal-customer base makes it increasingly difficult for potential entrants to enter the market and amass a sufficiently large customer base to make entry profitable. This increased difficulty that potential entrants face to steal customers upon entry, is likely to be reflected as relatively higher entry cost to these codeshare markets.

Via reduced-form econometric regressions, Goetz and Shapiro (2012) empirically test for the presence of entry-deterrence motives behind codesharing alliances, and find that an incumbent is approximately 25% more likely than average to codeshare when facing the threat of entry by low-cost carriers. However, Goetz and Shapiro (2012) did not investigate whether the entry-deterrence effect they found depends on the type of codesharing (Traditional versus Virtual) ⁵ employed by incumbent partner airlines. In addition, they did not fully investigate whether the entry-deterrence effect of codesharing depends on the identity of the carrier that is threatening to enter the relevant market.

Previous studies have argued that Southwest Airlines, if not the most formidable LCC in U.S. domestic air travel markets, is certainly among the most formidable LCCs in these markets. As such, many studies have treated Southwest separately than other

⁴ Lin (2008) extends this model to consider situations in which an incumbent has a relatively large hub-and-spoke network and entry has positive spillover network effects for the incumbent.

⁵ In the Definition and Data section of the paper we define and distinguish Traditional and Virtual codesharing.
LCCs, or focused on Southwest as the sole LCC [for example see Morrison (2001), Goolsbee and Syverson (2008), Brueckner, Lee and Singer (2012) among others]. Brueckner, Lee and Singer (2012) find that the presence of potential competition from Southwest reduces fares by 8 percent, while potential competition from other LCCs has no fare effect. Mason and Morrison (2008) find significant differences between low-cost carriers in their business models. Therefore, we are encouraged to investigate whether any possible entry-deterrent effect of codesharing depends on whether the potential entrant is Southwest versus other low-cost carriers.

While Goetz and Shapiro (2012) use a reduced-form regression analysis to empirically test whether domestic codesharing alliances are motivated by an entry-deterrence purpose, to the best of our knowledge, there is no other empirical analysis of this issue. We believe a structural econometric analysis of this issue is needed to take us a step further in examining the evidence on this type of strategic behavior by airlines. One advantage of using a structural econometric model is that we are able to quantify, in monetary terms, possible market entry barriers associated with codesharing.

Therefore, the main objective of our paper is to use a structural econometric model to investigate: (1) whether codesharing between airlines in domestic air travel markets, a form of strategic alliance, has a deterrent effect on the entry of potential competitors; (2) whether there is a particular type of codesharing among alliance partners that is most effective at deterring entry; and (3) whether there is a particular type of airline that seems to be more deterred via such type of codesharing between alliance partners.

To assess the deterrent effect of codesharing on market entry of potential competitors, we proceed as follows. First, we estimate a discrete choice model of air travel demand. Second, for the short-run supply side, we assume that multiproduct airlines set prices for their differentiated products according to a Nash equilibrium price-setting game. The Nash equilibrium price-setting assumption allows us to derive product-specific markups and use them to compute firm-level variable profits, which are subsequently used in a dynamic market entry/exit game. Third, we specify a dynamic market entry/exit game played between airlines in which each airline chooses markets in which to be active during specific time periods in order to maximize its expected
discounted stream of profit. Per-period profit comprises variable profit less per-period fixed cost and a one-time entry cost if the airline will serve the relevant market in the next period but not currently serving the market. The dynamic entry/exit game allows us to estimate fixed and entry costs by exploiting previously computed variable profits from the Nash equilibrium price-setting game along with observed data on airlines’ decisions to enter and exit certain markets. It is the estimated effect that codesharing between incumbents have on the entry cost of potential entrants that allows us to evaluate whether codesharing has an entry deterrent effect.

We specify entry cost functions such that we can identify whether or not the extent of codesharing by incumbent airlines in a market influences the market entry cost of potential entrants, and whether this influence differs by type of potential entrant. A potential entrant can fall into one of three categories: (1) legacy carriers; (2) Southwest Airlines; or (3) other LCCs. Since the majority of codesharing in U.S. domestic air travel markets occurs between legacy carriers, this implies that our entry cost function specification effectively allows us to explore whether codesharing between legacy carriers deferentially deter market entry of: (1) other legacy carriers; (2) Southwest Airlines; (3) other LCCs; or some subset of the three carrier types.

An important aspect of our analysis is that we follow Ito and Lee (2007) and Gayle (2008) and decompose codesharing into two main types: (1) Traditional Codesharing; and (2) Virtual Codesharing. As such, we are able to investigate whether possible entry deterrent effects of codesharing depend on the type of codesharing.

Our econometric estimates from the entry cost function suggest that more traditional codesharing between incumbent carriers in a market puts Southwest at a relative disadvantage to enter the market compared to all other potential entrants (legacy carriers and other low-cost carriers). Specifically, each percentage point increase in traditional codeshare products offered by incumbents in a market raises market entry cost for Southwest by 0.3%, but reduces market entry cost by 0.6% and 0.7% for legacy and other low-cost carriers respectively. Therefore, traditional codesharing by market incumbent carriers has a relative market entry deterrent effect on Southwest. Furthermore, there is no evidence that virtual codesharing has a market entry deterrent effect.
We link the market entry deterrent effects inferred from our entry cost estimates to findings from our demand estimates. Estimates from our demand model suggest that incumbents’ traditional codesharing has a larger demand-increasing effect for their products compared to virtual codesharing. Since the demand-side evidence is consistent with the argument that traditional codesharing better serves to expand the loyal customer base of market incumbents, then with more traditional codesharing by incumbents, a potential entrant will find it more costly (higher market entry cost) to build its own customer base upon entry, making entry less profitable in these high traditional codeshare markets. We argue that this entry deterrent effect is binding for Southwest but not for others due to evidence that the vast majority of codesharing is done between legacy carriers, and competition between Southwest and legacy carriers is stronger than competition between other low-cost carriers and legacy carriers. For example, as pointed out above, Brueckner, Lee and Singer (2012) provide evidence that incumbent legacy carriers do not cut fares in response to potential competition from other low-cost carriers, but cut fares by 8% in response to potential competition from Southwest.

The remainder of this paper is organized as follows. Next we define and discuss relevant concepts and terms used throughout this paper, and describe how we construct the dataset of our working sample. Our econometric model is presented in section 3. Section 4 discusses the estimation procedure and summarizes estimation results. Concluding remarks are offered in section 5.

2. Definitions and Data

2.1 Definitions

A market is defined as a directional pair of origin and destination cities during a particular time period. For example, air travel from New York to Dallas is a different market than air travel from Dallas to New York. Treating markets in a direction-specific manner better enables our model to account for the impact that heterogeneity in demographics across origin cities has on air travel demand.

An itinerary is a detailed plan of a journey from an origin to destination city, so it consists of one or more flight coupons depending on whether or not intermediate stops are required. Each coupon typically represents travel on a particular flight.
has a ticketing carrier and an operating carrier. The ticketing carrier, or sometimes referred to as the marketing carrier, is the airline selling the ticket for the seat, while the operating carrier is the airline whose plane actually transports the passenger. A product is defined as the combination of ticketing carrier, operating carrier(s) and itinerary.

A pure online product has an itinerary whose operating carrier for each flight coupon and ticketing carrier are the same. For example, a two-segment ticket with both segments operated and marketed by United Airlines (UA), i.e. (UA/UA → UA/UA). A flight is said to be codeshared when the operating and ticketing carriers for that flight differ. A traditional codeshared product is defined as an itinerary that has a single ticketing carrier for the trip, but multiple operating carriers, one of which is the ticketing carrier. For example, a connecting itinerary between Continental Airlines (CO) and Delta Airlines (DL), marketed solely by Delta (CO/DL → DL/DL) is a traditional codeshared product. A virtual codeshared product is defined as an itinerary that has the same operating carrier for all trip segments, but this operating carrier differs from the ticketing carrier. For example, a connecting itinerary operated entirely by United Airlines but marketed solely by US Airways (US) (UA/US → UA/US), is a virtual codeshared product.6

2.2 Data

We use data from the Airline Origin and Destination Survey (DB1B) collected by the Office of Airline Information of the Bureau of Transportation Statistics. The DB1B survey is a 10% random sample of airline tickets from certified carriers in the United States. A record in this survey represents a ticket. Each ticket contains information on ticketing and operating carriers, origin and destination airports, fare, number of passengers, intermediate airport stops, market miles flown on the trip itinerary, nonstop miles between the origin and destination airports, and number of market coupons. Unfortunately, there is no passenger-specific information in the data, nor is there any information on ticket restrictions such as advance-purchase and length-of-stay requirements.

6 Additional discussion and examples of pure online, traditional codeshare and virtual codeshare air travel products can be found in Ito and Lee (2007) and Gayle (2007, 2008 and 2013). In addition, see Gayle and Brown (2012).
The data are quarterly, and our study uses data for the entire years of 2005, 2006 and 2007. Following Aguirregabiria and Ho (2012) among others, we select data on air travel between the 65 largest US cities. Some of the cities belong to the same metropolitan area and have multiple airports. Table 1 reports a list of the cities and the relevant airport groupings we use based on common metropolitan areas.

Table 1

<table>
<thead>
<tr>
<th>City, State</th>
<th>Airports</th>
<th>City pop. 2005</th>
<th>City pop. 2006</th>
<th>City pop. 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York-Newark-Jersey</td>
<td>LGA, JFK, EWR</td>
<td>8,726,847</td>
<td>8,764,876</td>
<td>8,826,288</td>
</tr>
<tr>
<td>Los Angeles, CA</td>
<td>LAX, BUR</td>
<td>3,794,640</td>
<td>3,777,502</td>
<td>3,778,658</td>
</tr>
<tr>
<td>Chicago, IL</td>
<td>ORD, MDW</td>
<td>2,824,584</td>
<td>2,806,391</td>
<td>2,811,035</td>
</tr>
<tr>
<td>Dallas, TX^a</td>
<td>DAL, DFW</td>
<td>2,479,896</td>
<td>2,528,227</td>
<td>2,577,723</td>
</tr>
<tr>
<td>Phoenix-Tempe-Mesa, AZ</td>
<td>PHX</td>
<td>2,087,948</td>
<td>2,136,518</td>
<td>2,171,495</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>HOU, IAH, EFD</td>
<td>2,076,189</td>
<td>2,169,248</td>
<td>2,206,573</td>
</tr>
<tr>
<td>Philadelphia, PA</td>
<td>PHL</td>
<td>1,517,628</td>
<td>1,520,251</td>
<td>1,530,031</td>
</tr>
<tr>
<td>San Diego, CA</td>
<td>SAN</td>
<td>1,284,347</td>
<td>1,294,071</td>
<td>1,323,698</td>
</tr>
<tr>
<td>San Antonio, TX</td>
<td>SAT</td>
<td>1,258,733</td>
<td>1,292,082</td>
<td>1,323,698</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td>SJC</td>
<td>908,870</td>
<td>918,619</td>
<td>931,344</td>
</tr>
<tr>
<td>Detroit, MI</td>
<td>DTW</td>
<td>921,149</td>
<td>918,849</td>
<td>917,234</td>
</tr>
<tr>
<td>Denver-Aurora, CO</td>
<td>DEN</td>
<td>856,834</td>
<td>869,920</td>
<td>887,796</td>
</tr>
<tr>
<td>Indianapolis, IN</td>
<td>IND</td>
<td>789,250</td>
<td>792,619</td>
<td>796,611</td>
</tr>
<tr>
<td>Jacksonville, FL</td>
<td>JAX</td>
<td>786,938</td>
<td>798,494</td>
<td>805,325</td>
</tr>
<tr>
<td>San Francisco, CA</td>
<td>SFO</td>
<td>777,660</td>
<td>786,149</td>
<td>799,185</td>
</tr>
<tr>
<td>Columbus, OH</td>
<td>CMH</td>
<td>738,782</td>
<td>744,473</td>
<td>750,700</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>AUS</td>
<td>708,293</td>
<td>730,729</td>
<td>749,120</td>
</tr>
<tr>
<td>Memphis, TN</td>
<td>MEM</td>
<td>680,515</td>
<td>682,024</td>
<td>679,404</td>
</tr>
<tr>
<td>Minneapolis-St.Paul, MN</td>
<td>MSP</td>
<td>652,481</td>
<td>652,003</td>
<td>656,659</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>BWI</td>
<td>640,064</td>
<td>640,961</td>
<td>640,150</td>
</tr>
<tr>
<td>Charlotte, NC</td>
<td>CLT</td>
<td>631,160</td>
<td>652,202</td>
<td>669,690</td>
</tr>
<tr>
<td>El Paso, TX</td>
<td>ELP</td>
<td>587,400</td>
<td>595,980</td>
<td>600,402</td>
</tr>
<tr>
<td>Milwaukee, WI</td>
<td>MKE</td>
<td>601,983</td>
<td>602,782</td>
<td>602,656</td>
</tr>
<tr>
<td>Seattle, WA</td>
<td>SEA</td>
<td>575,036</td>
<td>582,877</td>
<td>592,647</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>BOS</td>
<td>609,690</td>
<td>612,192</td>
<td>622,748</td>
</tr>
</tbody>
</table>

^a includes Dallas, Arlington, Fort Worth and Plano
<table>
<thead>
<tr>
<th>City, State</th>
<th>Airports</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisville, KY</td>
<td>SDF</td>
<td>559,855</td>
<td>559,709</td>
<td>562,632</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>DCA, IAD</td>
<td>582,049</td>
<td>583,978</td>
<td>586,409</td>
</tr>
<tr>
<td>Nashville, TN</td>
<td>BNA</td>
<td>579,748</td>
<td>586,327</td>
<td>592,503</td>
</tr>
<tr>
<td>Las Vegas, NV</td>
<td>LAS</td>
<td>544,806</td>
<td>552,855</td>
<td>559,892</td>
</tr>
<tr>
<td>Portland, OR</td>
<td>PDX</td>
<td>534,112</td>
<td>538,091</td>
<td>546,747</td>
</tr>
<tr>
<td>Oklahoma City, OK</td>
<td>OKC</td>
<td>532,006</td>
<td>539,001</td>
<td>545,910</td>
</tr>
<tr>
<td>Tucson, AZ</td>
<td>TUS</td>
<td>524,830</td>
<td>530,349</td>
<td>536,752</td>
</tr>
<tr>
<td>Albuquerque, NM</td>
<td>ABQ</td>
<td>497,543</td>
<td>508,486</td>
<td>517,162</td>
</tr>
<tr>
<td>Long Beach, CA</td>
<td>LGB</td>
<td>467,851</td>
<td>463,723</td>
<td>459,925</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>MSY</td>
<td>455,188</td>
<td>208,548</td>
<td>288,113</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>CLE</td>
<td>449,188</td>
<td>442,409</td>
<td>438,068</td>
</tr>
<tr>
<td>Sacramento, CA</td>
<td>SMF</td>
<td>448,842</td>
<td>449,658</td>
<td>455,760</td>
</tr>
<tr>
<td>Kansas City, MO</td>
<td>MCI</td>
<td>463,983</td>
<td>470,076</td>
<td>475,830</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>ATL</td>
<td>483,108</td>
<td>498,208</td>
<td>519,569</td>
</tr>
<tr>
<td>Omaha, NE</td>
<td>OMA</td>
<td>432,148</td>
<td>437,523</td>
<td>442,452</td>
</tr>
<tr>
<td>Oakland, CA</td>
<td>OAK</td>
<td>392,112</td>
<td>392,076</td>
<td>397,441</td>
</tr>
<tr>
<td>Tulsa, OK</td>
<td>TUL</td>
<td>381,017</td>
<td>382,394</td>
<td>384,592</td>
</tr>
<tr>
<td>Miami, FL</td>
<td>MIA</td>
<td>390,768</td>
<td>412,400</td>
<td>424,866</td>
</tr>
<tr>
<td>Colorado Springs, CO</td>
<td>COS</td>
<td>393,804</td>
<td>398,778</td>
<td>399,751</td>
</tr>
<tr>
<td>Wichita, KS</td>
<td>ICT</td>
<td>354,524</td>
<td>356,592</td>
<td>360,897</td>
</tr>
<tr>
<td>St Louis, MO</td>
<td>STL</td>
<td>352,572</td>
<td>353,837</td>
<td>355,663</td>
</tr>
<tr>
<td>Santa Ana, CA</td>
<td>SNA</td>
<td>337,121</td>
<td>334,830</td>
<td>335,491</td>
</tr>
<tr>
<td>Raleigh-Durham, NC</td>
<td>RDU</td>
<td>553,294</td>
<td>574,065</td>
<td>596,049</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>PIT</td>
<td>316,206</td>
<td>313,306</td>
<td>312,322</td>
</tr>
<tr>
<td>Tampa, FL</td>
<td>TPA</td>
<td>325,569</td>
<td>332,604</td>
<td>334,852</td>
</tr>
<tr>
<td>Cincinnati, OH</td>
<td>CVG</td>
<td>331,310</td>
<td>332,185</td>
<td>333,321</td>
</tr>
<tr>
<td>Ontario, CA</td>
<td>ONT</td>
<td>170,630</td>
<td>170,865</td>
<td>171,603</td>
</tr>
<tr>
<td>Buffalo, NY</td>
<td>BUF</td>
<td>277,998</td>
<td>274,740</td>
<td>272,492</td>
</tr>
<tr>
<td>Lexington, KY</td>
<td>LEX</td>
<td>278,313</td>
<td>283,324</td>
<td>287,263</td>
</tr>
<tr>
<td>Norfolk, VA</td>
<td>ORF</td>
<td>237,487</td>
<td>238,832</td>
<td>236,051</td>
</tr>
</tbody>
</table>
We eliminate tickets with nominal prices cheaper than $50 and more expensive than $2000, those with multiple ticketing carriers, and those containing more than 2 intermediate stops. Within each quarter, a given itinerary-airline(s) combination is repeated many times, each time at a different price, making the data extremely large. To make the data more manageable, we collapse the data based on our definition of product (unique itinerary-airline(s) combination) for each quarter. Before collapsing the data, we aggregated the number of passengers and averaged market fare over each defined product. This is the process by which each defined product’s quantity and price are constructed. Products with quantity less than 9 passengers for the entire quarter are dropped from the data.\(^7\) Also, we eliminate monopoly markets, i.e. markets in which only one carrier provides products. In the collapsed data set, we have 434,329 observations (products), each of them unique for each quarter, across 32,680 markets.

Other variables that capture air travel product characteristics are created for estimation. A measure of product *Inconvenience* is defined as market miles flown divided by nonstop miles between origin and destination. Thus, the minimum value for variable *Inconvenience*, which is equal to 1, implies the most convenient itinerary for a given market. The dummy variable *Nonstop* is equal to 1 if the product uses a nonstop itinerary.

We measure the size of an airline's presence at the endpoint cities of a market from different perspectives. The variable *Opres_out* is a count of the number of different cities that the airline offers nonstop flights to, leaving from the origin city. On the other hand, *Opres_in* counts the number of different cities that the airline provides nonstop flights from, going into the origin city of the market. We also construct a destination presence variable *Dpres_out*, which measures the number of distinct cities that the airline has nonstop flights to, leaving from the destination city.

Opres_out is intended to help explain consumers' choice between airlines at the consumer's origin city. The presumption here is that a consumer is more likely to choose the airline that offers nonstop service to more cities from the consumer's origin city. On the other hand, the *Opres_in* and *Dpres_out* may better explain an airline's cost of

\(^7\) Berry (1992), Aguirregabiria and Ho (2012) among others use similar, and sometimes more stringent, quantity threshold to help eliminate idiosyncratic product offerings that are not part of the normal set of products offered in a market.
transporting passengers in a market. The argument is that due to possible economies of passenger-traffic density, an airline's marginal cost of transporting a passenger in a market is lower as the volume of passengers the airline channels through the market increases. An airline with large measures of Opres_{in} and Dpres_{out} for a given market, is likely to channel a large volume of passengers through the market, and therefore is expected to have lower marginal cost of transporting a passenger in the market.

From the collapsed dataset, observed product market shares (subsequently denoted by upper case S_j) are created by dividing quantity of product j sold (subsequently denoted by q_j) by the geometric mean of the origin city and destination city populations (subsequently denoted by POP), i.e. $S_j = \frac{q_j}{POP}$.

Traditional Codeshare and Virtual Codeshare are dummy variables equal to 1 respectively when the itinerary is identified to be traditional codeshared and virtual codeshared. The variables Percent Traditional for Airline and Percent Virtual for Airline measure the percentage of an airline's products in a market that are traditional codeshare and virtual codeshare respectively.

We only identify codeshare products between major carriers, i.e. following much of the literature on airline codesharing, we do not consider products between regional and major carriers as codeshare. For example, a product that involves American Eagle (MQ) and American Airlines (AA), where one of them is the ticketing carrier and the other is an operating carrier, is still considered by us to be pure online since American Eagle is a regional airline that serves for American Airlines. Summary statistics of the variables used for estimation are presented in Table 2. The variable Fare is measured in constant year 1999 dollars. We use the consumer price index to deflate Fare.

8 POP is measured by: $POP = \sqrt{\text{Origin Population} \times \text{Destination Population}}$. Due to the fact that population magnitudes are significantly larger than quantity sold for any given air travel product, observed product shares, computed as described above, are extremely small numbers. We therefore scale up all product shares in the data by a common factor. The common factor is the largest integer such that the outside good share ($S_0 = 1 - \sum_{j=1}^{J} S_j$) in each market remains positive. The common factor that satisfies these conditions in the data set is 35.
Table 2

Summary Statistics for the Dataset

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fare(^a)</td>
<td>166.35</td>
<td>52.19</td>
<td>45.08</td>
<td>1,522.46</td>
</tr>
<tr>
<td>Quantity</td>
<td>149.57</td>
<td>508.25</td>
<td>9</td>
<td>11,643</td>
</tr>
<tr>
<td>Opres(_{out})</td>
<td>29.05</td>
<td>28.35</td>
<td>0</td>
<td>177</td>
</tr>
<tr>
<td>Opres(_{in})</td>
<td>29.03</td>
<td>28.30</td>
<td>0</td>
<td>177</td>
</tr>
<tr>
<td>Dpres(_{out})</td>
<td>29.13</td>
<td>28.47</td>
<td>0</td>
<td>177</td>
</tr>
<tr>
<td>Nonstop</td>
<td>0.154</td>
<td>0.36</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Market miles flown</td>
<td>1,542.34</td>
<td>695.27</td>
<td>67</td>
<td>4,156</td>
</tr>
<tr>
<td>Nonstop miles</td>
<td>1,371.42</td>
<td>648.60</td>
<td>67</td>
<td>2,724</td>
</tr>
<tr>
<td>Inconvenience</td>
<td>1.15</td>
<td>0.21</td>
<td>1</td>
<td>2.975</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>0.02</td>
<td>0.14</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>0.02</td>
<td>0.14</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Percent Traditional for Airline</td>
<td>2.04</td>
<td>10.42</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Percent Virtual for Airline</td>
<td>2.06</td>
<td>9.70</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Observed Product Shares ((S_j))</td>
<td>0.0067</td>
<td>0.02</td>
<td>5.45E-05</td>
<td>0.97</td>
</tr>
<tr>
<td>Number of Products</td>
<td>434,329</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Markets</td>
<td>32,680</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: \(^a\) The variable “Fare” is measured in constant year 1999 dollars. We use the consumer price index to deflate “Fare”.

Table 3 presents a list of ticketing carriers in the dataset according to type of products that each airline provides. The first two columns show that there are 21 airlines involved in pure online products. All airlines in the dataset provide pure online products. The next two columns in Table 3 show that, among all airlines in the dataset, 10 are involved in codeshare products and 7 of these airlines are the ones we classify as legacy carriers. The fifth column in Table 3 reports the percent of codeshare products in the sample that each carrier offers for sale to consumers. The data in this column reveal that the vast majority (approximately 83 percent) of codeshare products are provided by legacy carriers.

The last column in Table 3 reports the percent of each carrier’s codeshare products that are codeshared with legacy carriers. Noticeably, almost all of each legacy carrier’s codeshare products are codeshared with other legacy carriers, and moreover, ATA and Southwest Airlines, which are low-cost carriers, do not codeshare with legacy carriers. An exception to this pattern is Frontier Airlines, a low-cost carrier that has 91
percent of its codeshare products codeshared with a legacy carrier (typically with Alaska Airlines). However, the previous column shows that codeshare products offered by Frontier Airlines only account for 0.07 percent of total codeshare products offered. In summary, the data reveal that a substantial amount of codeshare alliances are formed between legacy carriers.

Table 3

<table>
<thead>
<tr>
<th>Airlines Involved in Pure online Products</th>
<th>Airlines that offer Codeshare Products to consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airlines Name</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Legacy Carriers</td>
<td></td>
</tr>
<tr>
<td>Aloha Airlines</td>
<td>AQ</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td>AS</td>
</tr>
<tr>
<td>JetBlue Airways</td>
<td>B6</td>
</tr>
<tr>
<td>Continental Air Lines Inc.</td>
<td>CO</td>
</tr>
<tr>
<td>Independence Air</td>
<td>DH</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td>DL</td>
</tr>
<tr>
<td>Frontier Airlines Inc.</td>
<td>F9</td>
</tr>
<tr>
<td>AirTran Airways</td>
<td>FL</td>
</tr>
<tr>
<td>Allegiant Air</td>
<td>G4</td>
</tr>
<tr>
<td>America West Airlines Inc.</td>
<td>HP</td>
</tr>
<tr>
<td>Spirit Air Lines</td>
<td>NK</td>
</tr>
<tr>
<td>Northwest Airlines Inc.</td>
<td>NW</td>
</tr>
<tr>
<td>Skybus Airlines, Inc.</td>
<td>SX</td>
</tr>
<tr>
<td>Sun Country Airlines</td>
<td>SY</td>
</tr>
<tr>
<td>ATA Airlines</td>
<td>TZ</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>UA</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>US</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>WN</td>
</tr>
<tr>
<td>ExpressJet Airlines Inc.</td>
<td>XE</td>
</tr>
<tr>
<td>Midwest Airlines</td>
<td>YX</td>
</tr>
</tbody>
</table>

Notes: The carries we classify as Legacy carriers include: American Airline, Alaska Airlines, Continental Air, Delta Air Lines, Northwest Airlines, United Air Lines, and US Airways.
Table 4 summarizes our data according to the three types of products. Among codeshared products, the number of traditional codeshared products is slightly less than the number of virtual codeshared products, but twice as many passengers travel on virtual codeshared products compared to traditional codeshare products.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Observations/Products</th>
<th>Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
</tr>
<tr>
<td>Pure online</td>
<td>416,537</td>
<td>95.90</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
<td>8,847</td>
<td>2.04</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
<td>8,945</td>
<td>2.06</td>
</tr>
<tr>
<td>Total</td>
<td>434,329</td>
<td>100.00</td>
</tr>
</tbody>
</table>

As we explain in subsequent sections of the paper, the short-run demand and supply sides of the model are estimated using the data at the product-market-time period level, while the dynamic entry/exit model is estimated using the data aggregated up to the airline-market-time period level. Since the data contain many more airlines than the dynamic entry/exit model can feasibly handle, at the stage of estimating the dynamic model, we impose additional restrictions to be able to estimate the dynamic model. A restrictive assumption we make is that a set of the airlines in our data can reasonably be lumped into an “Other low-cost carriers” category and treated as if the “Other low-cost carriers” is a single carrier. Similar to many studies in the literature [e.g. Brueckner, Lee and Singer (2012), Morrison (2001) among others], Southwest Airlines is the low-cost carrier that we treat separately than other low-cost carriers. So the “Other low-cost carriers” category includes all low-cost carriers except Southwest Airlines.

By using the number of passengers as a threshold to define whether or not an airline is active in a market, we are able to identify the number of markets that each airline has entered and exited. We define an airline to be active in a directional origin-destination market during a quarter if at least 130 passengers travel on products offered for sale by the airline in this market during the quarter.9 Each airline's market entry and exit decisions contained in the data are crucial for us to be able to estimate fixed and

9 Our passenger threshold of 130 for a directional market is equivalent to the 260 for non-directional market used by Aguirregabiria and Ho (2012).
entry costs, since the dynamic entry/exit model relies on the optimality assumption that potential entrants will only enter a market if the one-time entry cost is less than the expected discounted future stream of profits, and an incumbent will exit a market when per-period fixed cost becomes sufficiently high relative to per-period variable profits such that the expected discounted future stream of profits is non-positive. Therefore, it is useful to get a sense of the extent to which the data contain information relevant for identifying fixed and entry costs from the dynamic model. Table 5 reports the number of market entry and exit events by airline. The table shows that each airline has several market entry and exit events, but most airlines have more market entry than market exit events, and overall there are substantially more entry than exit events. This suggests that we might be better able to identify entry cost than fixed cost.

<table>
<thead>
<tr>
<th>Airlines</th>
<th>Number of market entry events</th>
<th>Number of market exit events</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Airlines Inc.</td>
<td>498</td>
<td>332</td>
</tr>
<tr>
<td>Continental Air Lines Inc.</td>
<td>372</td>
<td>303</td>
</tr>
<tr>
<td>Delta Air Lines Inc.</td>
<td>348</td>
<td>360</td>
</tr>
<tr>
<td>Northwest Airlines Inc.</td>
<td>323</td>
<td>309</td>
</tr>
<tr>
<td>United Air Lines Inc.</td>
<td>316</td>
<td>259</td>
</tr>
<tr>
<td>US Airways Inc.</td>
<td>655</td>
<td>151</td>
</tr>
<tr>
<td>Alaska Airlines Inc.</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Southwest Airlines Co.</td>
<td>262</td>
<td>105</td>
</tr>
<tr>
<td>Other low cost carriers</td>
<td>368</td>
<td>625</td>
</tr>
<tr>
<td>Overall</td>
<td>3,164</td>
<td>2,456</td>
</tr>
</tbody>
</table>
3. Model

3.1 Demand

Demand is modeled using a nested logit model. There are \(POP \) potential consumers, who may either buy one of \(J \) air travel products, \(j = 1, \ldots, J \), or otherwise choose the outside good (good 0), e.g. driving, taking a train, or not traveling at all. The nested logit model classifies products into \(G \) groups, and one additional group for the outside good. Products within the same group are closer substitutes than products from different groups. Groups are defined by ticketing carriers in this study, so products with the same ticketing carrier belong to the same group. The indirect utility of consumer \(c \) from purchasing product \(j \) is given by:

\[
\begin{align*}
 u_{cj} &= \mu_j + \delta \zeta_{cg} + (1 - \delta) \epsilon_{cj}^d \\
 \mu_j &= x_j \phi^x - \phi^p p_j + \xi_j
\end{align*}
\]

The first term, \(\mu_j \), is the mean valuation for product \(j \), common to all consumers. The mean valuation of product \(j \) depends on its price, \(p_j \), a vector \(x_j \) of observed characteristics of product \(j \), and error term \(\xi_j \) reflecting unobserved (to researchers) product characteristics:

\[
\mu_j = x_j \phi^x - \phi^p p_j + \xi_j
\]

where \(\phi^x \) and \(\phi^p \) are parameters to be estimated.

The second term in equation (1), \(\zeta_{cg} \), is a random component of utility that is common to all products belonging to group \(g \). The term \(\epsilon_{cj}^d \) is consumer \(c \)'s unobserved utility, specific to product \(j \). The parameter \(\delta \) lies between 0 and 1 and measures the correlation of the consumers’ utility across products belonging to the same group. The correlation of preferences increases as \(\delta \) approaches 1. At the other extreme, if \(\delta = 0 \), there is no correlation of preferences: consumers are equally likely to switch to products in a different group as to products in the same group in response to a price increase.

The nested logit model assumes that the random terms \(\zeta_{cg} \) and \(\epsilon_{cj}^d \) have distributions such that \(\delta \zeta_{cg} + (1 - \delta) \epsilon_{cj}^d \) have the extreme value distribution. Normalizing the mean utility level for outside good to 0, i.e., \(\mu_0 = 0 \), the probability that a consumer chooses product \(j \) is as follows:
\[s_j = \frac{\exp \left(\frac{\mu_j}{1 - \delta} \right)}{1 + \sum_{g=1}^{G} D_g^{1-\delta}} \times \frac{D_g^{1-\delta}}{\sum_{k \in G_g} \exp \left[\frac{\mu_k}{1 - \delta} \right]} \]

(3)

where \(D_g = \sum_{k \in G_g} \exp \left[\frac{\mu_k}{1 - \delta} \right] \). The total quantity sold of product \(j, q_j \), is simply specified to equal to the probability that a potential consumer chooses product \(j \) times the total number of potential consumers, \(POP \):

\[q_j = s_j(p, x, \xi; \Phi^d) \times POP \]

(4)

where \(\Phi^d = (\phi^p, \phi^x, \delta) \) is the vector of demand parameters to be estimated.

3.2 Supply

The ticketing carrier of a codeshare product markets and sets the final price for the round-trip ticket and compensates the operating carrier for operating services provided. Unfortunately for researchers, partner airlines do not publicize details of how they compensate each other on their codeshare flights. Therefore, our challenge as researchers is to specify a modeling approach that captures our basic understanding of what is commonly known about how a codeshare agreement works without imposing too much structure on a contracting process about which we have few facts. As such, we follow the modeling approach outlined in Chen and Gayle (2007) and Gayle (2013).

Chen and Gayle (2007) and Gayle (2013) suggest that for modeling purposes a codeshare agreement can be thought of as a privately negotiated pricing contract between partners \((w, \Gamma)\), where \(w \) is a per-passenger price the ticketing carrier pays over to an operating carrier for transporting the passenger, while \(\Gamma \) represents a potential lump-sum transfer between partners that determines how the joint surplus is distributed. For the purposes of this paper we do not need to econometrically identify an equilibrium value of \(\Gamma \), but in describing the dynamic part of the model, we do show where \(\Gamma \) enters the model.

Suppose the final price of a codeshare product is determined within a sequential price-setting game, where in the first stage of the sequential process the operating carrier sets price, \(w \), for transporting a passenger using its own plane(s), and privately makes this price known to its partner ticketing carrier. In the second stage, conditional on the agreed upon price \(w \) for services supplied by the operating carrier, the ticketing carrier sets the final round-trip price \(p \) for the codeshare product. The final subgame in this sequential
price-setting game is played between ticketing carriers, and produces the final ticket prices observed by consumers.

Each ticketing carrier i solves the following profit maximization problem:

$$\max_{p_{jmt}} VP_{lmt} = \max_{p_{jmt}} \sum_{j \in B_{lmt}} (p_{jmt} - mc_{jmt})q_{jmt}$$

(5)

where VP_{lmt} is the variable profit carrier i obtains in market m during period t by offering the set of products B_{lmt} to consumers, q_{jmt} is the quantity of tickets for product j sold in market m, p_{jmt} is the price of product j, and mc_{jmt} is the effective marginal cost incurred by ticketing carrier i from offering product j.

Let $f = 1, ..., F$ index the corresponding operating carriers. If product j is a traditional codeshare product, then $mc_{jmt} = c_{jmt}^f + w_{jmt}^f$, where c_{jmt}^f is the marginal cost that ticketing carrier i incurs by using its own plane to provide transportation services on some segment(s) of the trip needed for product j, while w_{jmt}^f is the price ticketing carrier i pays to operating carrier f for its transportation services on the remaining trip segment(s). If instead product j is a virtual codeshare product, then $mc_{jmt} = w_{jmt}^f$, where w_{jmt}^f is the price the ticketing carrier pays to operating carrier f for its exclusive transportation services in the provision of product j.\(^\text{10}\) Last, if product j is a pure online product, then $mc_{jmt} = c_{jmt}^i$. In the case of a pure online product, the ticketing carrier is also the sole operating carrier of product j, i.e., $i = f$.

In equilibrium, the amount of product j an airline sells equals to the quantity demand, that is, $q_{jmt} = s_{jmt}(p, x, \xi; \Phi^d) \times POP$. The optimization problem in (5) yields the following set of J first-order conditions – one for each of the J products in the market:

$$\sum_{k \in B^i} (p_k - mc_k) \frac{\partial s_k}{\partial p_j} + s_j = 0 \text{ for all } j = 1, ..., J$$

(6)

We have dropped the market and time subscripts in equation (6) only to avoid a clutter of

\(^{10}\) The implicit assumption here is that the ticketing carrier of a virtual codeshare product only incurs fixed expenses in marketing the product to potential passengers.
notation. The set of first-order conditions can be represented in matrix notation as follows:

\[(\Omega \ast \Delta) \times (p - mc) + s = 0\] \hspace{1cm} (7)

where \(p\), \(mc\), and \(s\) are \(J \times 1\) vectors of product prices, marginal costs, and predicted product shares respectively, \(\Omega\) is a \(J \times J\) matrix of appropriately positioned zeros and ones that capture ticketing carriers’ “ownership” structure of the \(J\) products in a market, \(\ast\) is the operator for element-by-element matrix multiplication, and \(\Delta\) is a \(J \times J\) matrix of own and cross-price effects, where element \(\Delta_{jk} = \frac{\partial s_k}{\partial p_j}\). Since for purposes of the model the ticketing carrier is considered the “owner” of a product, in the discussion that follows, “airline” is synonymous with ticketing carrier.

Equation (7) can be re-arranged to yield a vector of product markups:

\[mkup(x, \xi; \Phi^d) = p - mc = -(\Omega \ast \Delta)^{-1} \times s\] \hspace{1cm} (8)

Based on equations (5) and (8), and with estimates of demand parameters in hand, \(\Phi^d\), firm-level variable profit can be recovered by:

\[VP_{int} = \sum_{j \in B_{int}} mkup_{jint}(x, \xi; \Phi^d)q_{jint}\] \hspace{1cm} (9)

3.3 Dynamic Entry/Exit Game

In the dynamic entry/exit game, each airline chooses markets in which to be active during specific time periods. An airline being active in a market means that the airline actually sells products to consumers in the market even though a subset of those products may use the operating services of the airline’s codeshare partner carriers. Each airline optimally makes this decision in order to maximize its expected discounted stream of profit:

\[E_t \left(\sum_{r=0}^{\infty} \beta^r \Pi_{im,t+r} \right)\] \hspace{1cm} (10)

where \(\beta \in (0,1)\) is the discount factor, and \(\Pi_{im,t+r}\) is the per-period profit of airline \(i\) in origin-destination market \(m\). Airline \(i\)’s per-period profit is:
\[\Pi_{imt} = a_{im,t-1}VP_{imt} - a_{imt}F_{imt} \]

(11)

where \(VP_{imt} \) represents the variable profit of airline \(i \) in origin-destination market \(m \) during period \(t \) that is computed from the previously discussed differentiated products Nash price-setting game; \(a_{im,t-1} \) is a zero-one indicator that equals 1 only if airline \(i \) had made the decision in period \(t-1 \) to be active in market \(m \) during period \(t \), therefore \(a_{imt} = 1 \) only if airline \(i \) makes decision in period \(t \) to be active in market \(m \) during period \(t+1 \); and \(F_{imt} \) is the sum of fixed and entry costs of airline \(i \) in market \(m \) during period \(t \).

Let \(F_{imt} \) be specified as:

\[
F_{imt} = FC_{imt} + \epsilon_{imt}^{FC} + \left(1 - a_{im,t-1}\right)\left[EC_{imt} + \epsilon_{mt}^{Tr} + \epsilon_{mt}^{Vir}
ight] + \epsilon_{imt}^{EC}
\]

(12)

where \(FC_{imt} \) represents the deterministic part of per-period fixed cost of operating flights in origin-destination market \(m \). The component \(\epsilon_{imt}^{FC} \) represents a private firm-idiosyncratic shock to airline \(i \)'s fixed cost. The fixed cost \(FC_{imt} + \epsilon_{imt}^{FC} \) is paid now only if the airline decides to be active in market \(m \) next period, i.e., if \(a_{imt} = 1 \).

The entry cost \(EC_{imt} + \epsilon_{mt}^{Tr} + \epsilon_{mt}^{Vir} + \epsilon_{imt}^{EC} \) has four components; \(EC_{imt} \) is a deterministic component, while \(\epsilon_{mt}^{Tr}, \epsilon_{mt}^{Vir}, \) and \(\epsilon_{imt}^{EC} \) represent shocks to entry cost. Shocks \(\epsilon_{mt}^{Tr} \) and \(\epsilon_{mt}^{Vir} \) only vary by market and time and are observed by firms, but not by us the researchers, while \(\epsilon_{imt}^{EC} \) represents a private firm-idiosyncratic shock to airline \(i \)'s entry cost. The entry cost is paid only when the airline is not active in market \(m \) at period \(t \) but it decides to be active in the market next period, i.e., if \(a_{im,t-1} = 0 \) and \(a_{imt} = 1 \).

Let the composite private firm-idiosyncratic shock to airline \(i \)'s fixed and entry costs be denoted by \(\epsilon_{imt} \). Based on equation (12), \(\epsilon_{imt} = \epsilon_{imt}^{FC} + \left(1 - a_{im,t-1}\right)\epsilon_{imt}^{EC} \). We assume that the composite private information shock, \(\epsilon_{imt} \), is independently and identically distributed over firms, markets and time, and has a type 1 extreme value probability distribution function.

The deterministic portions of fixed and entry costs are specified as:
\[FC_{int} = \theta_0^{FC} + \theta_1^{FC} Pr_{int} \]
\[EC_{int} = \theta_0^{EC} + \theta_1^{EC} Pr_{int} + \theta_2^{EC} Pr_{Trad_{mt}} + \theta_3^{EC} Pr_{Virtual_{mt}} + \theta_4^{EC} Pr_{Trad_{mt} \times Southwest} + \theta_5^{EC} Pr_{Virtual_{mt} \times Southwest} + \theta_6^{EC} Pr_{Trad_{mt}} \times Other_{lcc} + \theta_7^{EC} Pr_{Virtual_{mt}} \times Other_{lcc} \]

where \(Pr_{int} \) is the mean across size-of-presence variables \(Opres_{in} \) and \(Dpres_{out} \) for airline \(i \) at the endpoint cities of market \(m \); \(^{11}\) \(Pr_{Trad_{mt}} \) is the percent of products in market \(m \) during period \(t \) that are traditional codeshare; \(Pr_{Virtual_{mt}} \) is the percent of products in market \(m \) during period \(t \) that are virtual codeshare; \(Southwest \) is a zero-one dummy variable that equals to one only if the airline is Southwest; \(Other_{lcc} \) is a zero-one dummy variable that equals to one for low-cost carriers other than Southwest; and \(\{\theta_0^{FC}, \theta_1^{FC}, \theta_0^{EC}, \theta_1^{EC}, \theta_2^{EC}, \theta_3^{EC}, \theta_4^{EC}, \theta_5^{EC}, \theta_6^{EC}, \theta_7^{EC}\} \) is the set of structural parameters to be estimated.

\(Pr_{Trad_{mt}} \) and \(Pr_{Virtual_{mt}} \) measure the extent of codesharing that takes place in a market. While we do not explicitly model airlines' optimizing decision of whether or not to codeshare in a market, it is reasonable to conjecture that this optimizing decision is influenced by the effective cost an airline faces to use its own planes to begin providing service in the market (part of its market entry cost). This further suggests that shocks to market entry cost that are unobserved to us, \(\epsilon_{mt}^{Trad} \) and \(\epsilon_{mt}^{Vir} \), are likely to influence \(Pr_{Trad_{mt}} \) and \(Pr_{Virtual_{mt}} \) respectively. As such, we formally specify the following equations:

\[Pr_{Trad_{mt}} = Z_{mt} \gamma + \epsilon_{mt}^{Trad} \quad (15) \]

\[Pr_{Virtual_{mt}} = Z_{mt} \lambda + \epsilon_{mt}^{Vir} \quad (16) \]

where \(Z_{mt} \) is a matrix of variables that influence the extent of traditional and virtual codesharing that takes place in a market; \(\gamma \) and \(\lambda \) are vectors of parameters associated with these variables in equations (15) and (16) respectively; while \(\epsilon_{mt}^{Trad} \) and \(\epsilon_{mt}^{Vir} \) are

\(^{11}\) As we previously defined in the section, \textit{Definitions and Data}, \(Opres_{in} \) is a variable that counts the number of different cities that the airline provides nonstop flights from, going into the origin city of the market, while variable \(Dpres_{out} \) counts the number of distinct cities that the airline has nonstop flights to, leaving from the destination city.
assumed to be independently and identically distributed normal random variables with mean zero and standard deviations σ^{Trad} and σ^{Vir} respectively. Therefore, the model accounts for the endogeneity of variables $\text{Percent}_\text{Trad}_{mt}$ and $\text{Percent}_\text{Virtual}_{mt}$ in the entry cost function.

The variables we include in Z_{mt} are: (1) the geometric mean of the origin city and destination city populations (POP), which is a measure of market size; (2) nonstop flight distance between the origin and destination; (3) one-period lag of the Herfindahl-Hirschman Index (HHI) computed based on the relative sizes of airlines' presence at the market endpoint cities, where an airline's size of city presence is measured by the previously defined variables, Opres_{in} and $\text{Dpres}_{\text{out}}$; 12 (4) origin city fixed effects; (5) destination city fixed effects; and (6) quarter fixed effects.

The set of structural parameters in the dynamic model to be estimated is $(\theta, \gamma, \lambda)$ where:

$$\theta = \{\theta_0^{\text{FC}}, \theta_1^{\text{FC}}, \theta_0^{\text{EC}}, \theta_1^{\text{EC}}, \theta_2^{\text{EC}}, \theta_3^{\text{EC}}, \theta_4^{\text{EC}}, \theta_5^{\text{EC}}, \theta_6^{\text{EC}}, \theta_7^{\text{EC}}\}'.$$ (17)

θ_0^{FC} measures mean (across airlines, markets and time) fixed cost, while θ_1^{FC} measures the effect that size of an airline's city presence has on fixed cost. The mean recurrent fixed cost parameter θ_0^{EC} may comprise fixed expenses incurred by a ticketing carrier when the carrier markets a codeshare product to potential consumers. In our previous discussion we define (w, Γ) as a privately negotiated codeshare contract between partner carriers, where w is a per-passenger price the ticketing carrier pays over to an operating carrier for transporting the passenger, while Γ represents a potential lump-sum transfer between partners that determines how the joint surplus is distributed. It was shown that w enters the effective marginal cost of the ticketing carrier. However, the lump-sum transfer between partners, Γ, is nested in θ_0^{FC}, but we do not attempt to separately identify Γ since knowing its value is not essential for the purposes of our paper.

θ_0^{EC} measures mean (across airlines, markets and time) entry cost – we also allow mean entry cost to differ by the three carrier-types we consider (Legacy, Southwest and Other low cost carriers), in which case θ_0^{EC} would be a vector containing three

12 Opres_{in} is a variable that counts the number of different cities that the airline provides nonstop flights from, going into the origin city of the market, while variable $\text{Dpres}_{\text{out}}$ counts the number of distinct cities that the airline has nonstop flights to, leaving from the destination city.
parameters; θ_1^{EC} measures the effect that size of an airline's city presence has on entry cost; θ_2^{EC} and θ_3^{EC} respectively measure the impact that traditional and virtual codesharing between incumbent airlines have on market entry costs of legacy carriers that are potential entrants to the relevant market, that is $\frac{\partial E_{\text{legacy}}}{\partial \text{Percent}_{\text{Trad}}} = \theta_2^{EC}$ and $\frac{\partial E_{\text{legacy}}}{\partial \text{Percent}_{\text{Virtual}}} = \theta_3^{EC}$; θ_4^{EC} and θ_5^{EC} measure the respective differential impacts that traditional and virtual codesharing between incumbent airlines have on market entry cost of Southwest when it is a potential entrant to the relevant market, relative to the entry cost impacts that these two types of codesharing have on potential entrants that are legacy carriers, that is $\frac{\partial E_{\text{Southwest}}}{\partial \text{Percent}_{\text{Trad}}} - \frac{\partial E_{\text{legacy}}}{\partial \text{Percent}_{\text{Trad}}} = \theta_4^{EC}$ and $\frac{\partial E_{\text{Southwest}}}{\partial \text{Percent}_{\text{Virtual}}} - \frac{\partial E_{\text{legacy}}}{\partial \text{Percent}_{\text{Virtual}}} = \theta_5^{EC}$; while θ_6^{EC} and θ_7^{EC} measure the respective differential impacts that traditional and virtual codesharing between incumbent airlines have on market entry cost of other low-cost carriers that are potential entrants to the relevant market, relative to the entry cost impacts that these two types of codesharing have on potential entrants that are legacy carriers, that is $\frac{\partial E_{\text{other lcc}}}{\partial \text{Percent}_{\text{Trad}}} - \frac{\partial E_{\text{legacy}}}{\partial \text{Percent}_{\text{Trad}}} = \theta_6^{EC}$ and $\frac{\partial E_{\text{other lcc}}}{\partial \text{Percent}_{\text{Virtual}}} - \frac{\partial E_{\text{legacy}}}{\partial \text{Percent}_{\text{Virtual}}} = \theta_7^{EC}$. For example, if $\theta_4^{EC} > 0$, then we can infer that traditional codesharing between incumbent carriers raises Southwest’s entry cost to the relevant market, relative to the change in entry cost of potential entrant legacy carriers. Likewise, if $\theta_6^{EC} > 0$, then we can infer that traditional codesharing between incumbent carriers raises other low-cost carriers’ entry cost to the relevant market, relative to the change in entry cost of potential entrant legacy carriers.

Our specified equations do not include firm-specific component of fixed cost and entry cost for two reasons. First, estimation of the dynamic model is very computationally intensive, and convergence is difficult to achieve when the number of parameters being optimized over is large. Even with the model restricted to 10 parameters and four quarters of data, optimization took approximately seven days of continuously running the computer program. Second, even without firm-specific parameters, the fixed and entry cost functions do capture some heterogeneity across firms via the firm-specific variable $Pres_{i,m}$.
Reducing the dimensionality of the dynamic game

From the previously discussed Nash price-setting game, firm-level variable profit is:

\[VP_{imt}(x, \xi; \Phi^d) = \sum_{j \in B_{imt}} mkup_{jmt}(x, \xi; \Phi^d) \times q_{jmt}. \]

Let \(R_{imt}^* = a_{im,t-1} VP_{imt} \) (18)

Note that \((x, \xi)\) are state variables that are needed in the dynamic entry/exit game. As pointed out and discussed in Aguirregabiria and Ho (2012), \(R_{imt}^* \) aggregates these state variables in an economically meaningful way so that these state variables can enter the dynamic game through \(R_{imt}^* \). Therefore, Aguirregabiria and Ho (2012) recommend treating \(R_{imt}^* \) as a firm-specific state variable, rather than treating \(x \) and \(\xi \) as separate state variables. This innovation substantially reduces the dimensionality of the state space.

The payoff-relevant information of firm \(i \) in market \(m \) is:

\[y_{imt} = \{s_{imt}, R_{imt}^*, Pres_{imt}, Percent_Trad_{imt}, Percent_Virtual_{imt}, \epsilon_{imt}^{Trad}, \epsilon_{imt}^{Virt}\}. \] (19)

where \(s_{imt} = a_{im,t-1} \).

Each airline has its own vector of state variables, \(y_{imt} \), and airlines take into account these variables when making decisions. So it might seem that each airline does not take into account the strategies that other airlines adopt. However, an airline’s vector of state variables, \(y_{imt} \), depends on previous period entry and exit decisions of other airlines. For example, the variable profit state variable, \(R_{imt}^* \), depends on competition from other incumbents currently in the market, which implies that this state variable depends on the previous period’s entry/exit decisions of other airlines. Accordingly, our entry/exit model incorporates dynamic strategic interactions among airlines.

Let \(\sigma = \{s_{im}(y_{imt}, \epsilon_{imt}), i = 1,2,\ldots,N; m = 1,2,\ldots,M\} \) be a set of strategy functions, one for each airline. \(\sigma \) is a Markov Perfect Equilibrium (MPE) if the profile of strategies in \(\sigma \) maximizes the expected value of airline \(i \) at every state \((y_{imt}, \epsilon_{imt})\) given the opponent’s strategy.

Value Function and Bellman Equation

For notational convenience, we drop the market subscript. Let \(V_i^\sigma(y_t, \epsilon_{it}) \) be the value function for airline \(i \) given that the other airlines behave according to their
respective strategies in \(\sigma \). The value function is the unique solution to the Bellman equation:

\[
V_i^\sigma(y_t, \varepsilon_{it}) = \max_{a_{it} \in \{0, 1\}} \left\{ \Pi_{it}^\sigma(a_{it}, y_t) - \varepsilon_{it} \cdot a_{it} + \beta \int V_i^\sigma(y_{t+1}, \varepsilon_{it+1}) dG_i(\varepsilon_{it+1})F_i^\sigma(y_{t+1}|a_{it}, y_t) \right\}
\]

(20)

where \(\Pi_{it}^\sigma(a_{it}, y_t) \) and \(F_i^\sigma(y_{t+1}|a_{it}, y_t) \) are the expected one-period profit and expected transition of state variables, respectively, for airline \(i \) given the strategies of the other airlines. The profile of strategies in \(\sigma \) is a MPE if, for every airline \(i \) and every state \((y_t, \varepsilon_{it}) \), we have:

\[
\sigma_i(y_t, \varepsilon_{it}) = \arg\max_{a_{it}} \left\{ \Pi_{it}^\sigma(a_{it}, y_t) - \varepsilon_{it} \cdot a_{it} + \beta \int V_i^\sigma(y_{t+1}, \varepsilon_{it+1}) dG_i(\varepsilon_{it+1})F_i^\sigma(y_{t+1}|a_{it}, y_t) \right\}
\]

(21)

The transition rules we use for state variables are described in Appendix A. In Appendix B we illustrate that the MPE can also be represented as a vector of conditional choice probabilities (CCPs) that solves the fixed point problem \(P = \psi(P, \theta) \), where \(P = \{P_i(y): \text{for every firm and state } (i, y)\} \). \(P = \psi(P, \theta) \) is a vector of best response probability mapping, where \(\psi(\cdot) \) is the CDF of the type 1 extreme value distribution.

4. Estimation and Results

4.1 Estimation of demand

It is well-known in the empirical industrial organization literature that in case of the nested logit model, the demand equation to be estimated takes the following linear functional form [see Berry (1994)]:

\[
\ln(S_j) - \ln(S_0) = x_j \phi^x - \phi^p p_j + \delta \ln(S_{j|g}) + \xi_j
\]

(22)

where \(S_j \) is the observed share of product \(j \), \(S_0 \) is the share of the outside alternative for the market, and \(S_{j|g} \) is the observed product share within group \(g \).

Percent Traditional for Airline and Percent Virtual for Airline are two of the non-price product characteristic variables in \(x_j \). Recall that variables Percent Traditional for
Airline and *Percent Virtual for Airline* measure the percentage of an airline's products in a market that are traditional codeshare and virtual codeshare respectively. Since airlines optimally choose the extent to which to codeshare with others in a market, it is possible that these codeshare variables are correlated with shocks to demand captured in ξ_j, making *Percent Traditional for Airline* and *Percent Virtual for Airline* endogenous in the demand equation. In addition, it is well-known that p_j and $\ln(S_{j|g})$ are correlated with ξ_j. Therefore, our estimation of the demand equation takes into account the endogeneity of p_j, $\ln(S_{j|g})$, *Percent Traditional for Airline* and *Percent Virtual for Airline*. Specifically, we find instruments for these four variables and use two-stage-least squares (2SLS) to estimate the demand equation.

Instruments for endogenous variables in demand equation

To obtain valid instruments for price and within group product share, we exploit the fact that the menu of products offered by airlines in a market is predetermined at the time of shocks to demand. Furthermore, the non-price characteristics of an airline’s products are primarily determined by the route network structure of the airline, and unlike price and within group product share, this network structure is not routinely and easily changed during a short period of time, which mitigates the influence of demand shocks on the menu of products offered and their associated non-price characteristics.

The instruments we use for product price are: (1) number of competing products offered by other carriers with equivalent number of intermediate stops; (2) the squared deviation of a product’s itinerary distance from the average itinerary distance of competing products offered by other airlines; (3) the number of other products offered by an airline in a market; (4) itinerary distance; and (5) the interaction between jet fuel price13 and itinerary distance. The inclusion of these instruments is motivated by supply theory, which predicts that the price of a product will be influenced by changes in its markup and marginal cost.

The rationale for instruments (1) and (2) is that they are measures of the degree of competition that a product faces, which affects the size of a product’s markup. Next, it is

13 The jet fuel price we use is U.S. Gulf Kerosene-Type Jet Fuel Spot Price FOB from U.S. Energy Information Administration.
reasonable to assume that a multiproduct airline jointly sets the prices of its products in the market. Standard oligopoly theory tells us that the more substitutable products are, they will be priced higher if they are jointly priced by a single firm compared to if they are separately priced by different firms. This rationale leads us to believe that instrument (3) is correlated with product markup, and by extension product price. Instruments (4) and (5) should affect an airline's marginal cost of providing the product, which in turn influences the price of the product.

To instrument the log of within group product share, \(\ln(S_{ij|g}) \), we use the mean number of intermediate stops across products offered by an airline in a market. The rationale is that such an instrument is likely associated with passengers’ preference for products offered by one airline relative to the products offered by another.

For the variables Percent Traditional for Airline and Percent Virtual for Airline, we adopt two instruments: (i) one-period lag of the squared deviation of an airline’s size presence at the market endpoint cities from the average size presence of other airlines at the market endpoints; and (ii) the interaction of (i) with nonstop flight distance. The size of an airline's presence at the market endpoints is computed by averaging across variables \(\text{Opres}_\text{in} \) and \(\text{Dpres}_\text{out} \), which are variables we defined in the Definitions and Data section. An airline's measures of \(\text{Opres}_\text{in} \) and \(\text{Dpres}_\text{out} \) at the endpoints of a market are more determined by the airline's extended route network structure rather than features of the given origin-destination market. Therefore, it is reasonable to assume that \(\text{Opres}_\text{in} \) and \(\text{Dpres}_\text{out} \) are uncorrelated with \(\xi_j \). In addition, lower presence for an airline at the endpoints of a market makes it more likely that the airline will codeshare with others that are already serving the market. So \(\text{Opres}_\text{in} \) and \(\text{Dpres}_\text{out} \) are in principle good instruments for Percent Traditional for Airline and Percent Virtual for Airline. Last, we allow the influence of an airline's size of presence at the market endpoints on its extent of market codesharing to depend on the nonstop flight distance of the market. This explains the rationale for instrument (ii).

4.2 Results from demand estimation

We estimate the demand equation using both Ordinary Least Square (OLS) and Two-stage Least Squares (2SLS). The demand regression results are presented in Table
First, focusing on the coefficient estimates for variables \(Fare \) and \(\ln(Sj/g) \), we find that even though the signs of these coefficients in both OLS and 2SLS regressions are consistent with intuition, there are large differences in the size of the coefficient estimates when compared across the OLS and 2SLS regressions. Even more contrasting, are the OLS versus the 2SLS coefficient estimates on variables \(\text{Percent Traditional for Airline} \) and \(\text{Percent Virtual for Airline} \). This preliminary evidence suggests that estimates in the OLS regression are biased and inconsistent and thus instruments are needed for these endogenous variables.

To formally confirm that variables \(Fare \), \(\ln(Sj/g) \), \(\text{Percent Traditional for Airline} \) and \(\text{Percent Virtual for Airline} \) are endogenous, we perform a Hausman exogeneity test. The result of the Hausman test shown in Table 6 easily rejects the exogeneity of these four variables at conventional levels of statistical significance. As a check on the validity of instruments used for the 2SLS regression, we estimate first-stage reduced-form regressions for each of the endogenous variables. When \(Fare \) is the dependent variable in the reduced-form regression, R-squared is 0.32, but when \(\ln(Sj/g) \) is the dependent variable R-squared is 0.56. When \(\text{Percent Traditional for Airline} \) and \(\text{Percent Virtual for Airline} \) are dependent variables, the R-squared values are respectively 0.61 and 0.51. Hence, the following discussion of demand regression results in Table 6 is based on 2SLS estimates.

Since coefficient estimates are all statistically significant at conventional levels of statistical significance, the remainder of the discussion focuses on the signs of the coefficient estimates. As expected, the coefficient estimate on \(Fare \) is negative, implying that higher prices are associated with lower levels of utility. In other words, all else equal, passengers prefer cheaper air travel products.

The coefficient estimate on \(\text{Opres_out} \) is positive. This result is consistent with our priors, and suggests that travelers prefer to fly with airlines, all else equal, that offer services to more destinations from the travelers’ origin city. This estimated effect is possibly in part due to the benefits of frequent-flyer programs. Travelers are more likely to hold frequent-flyer membership with the airline they think they are most likely to use in the future, and it is reasonable for a passenger to conjecture that they will most often use the airline that offers service to a relatively large number of destinations from the
passenger’s origin city. Once the passenger becomes invested in the airline’s frequent-flyer program, this helps reinforce the passenger’s loyalty to the airline.

The coefficient estimate on Nonstop is positive, implying that consumers prefer nonstop flights between their origin and destination compared to travel itineraries that require intermediate stops. This is reasonable since passengers should prefer the most convenient travel itinerary from origin to destination. In addition, the coefficient estimate on Inconvenience is negative. This intuitively makes sense as well since passengers prefer the most direct route to the destination.

<table>
<thead>
<tr>
<th>Table 6 Demand Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fare</td>
</tr>
<tr>
<td>ln(Sj/g)</td>
</tr>
<tr>
<td>Opres_out</td>
</tr>
<tr>
<td>Nonstop</td>
</tr>
<tr>
<td>Inconvenience</td>
</tr>
<tr>
<td>Traditional Codeshare</td>
</tr>
<tr>
<td>Virtual Codeshare</td>
</tr>
<tr>
<td>Percent Traditional for Airline</td>
</tr>
<tr>
<td>Percent Virtual for Airline</td>
</tr>
<tr>
<td>Spring</td>
</tr>
<tr>
<td>Summer</td>
</tr>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>Ticketing carrier fixed effects</td>
</tr>
<tr>
<td>Year fixed effects</td>
</tr>
<tr>
<td>Market Origin fixed effects</td>
</tr>
<tr>
<td>Market Destination fixed effects</td>
</tr>
<tr>
<td>R-squared</td>
</tr>
<tr>
<td>Durbin-Wu-Hausman chi-sq test:</td>
</tr>
<tr>
<td>Robust regression F test:</td>
</tr>
</tbody>
</table>

*** indicates statistical significance at 1%
The Traditional Codeshare dummy variable has a negative coefficient estimate, implying that a traditional codeshare product makes passengers’ utility lower relative to a pure online product. A likely reason is that the flight itinerary for a pure online product is typically very streamlined because an airline can better organize its own flights and schedules to minimize layover time, as well as efficiently organize its own gates at airports. Even though codeshare partners try to streamline flights across carriers to minimize layover times and facilitate smoother connections, the negative coefficient estimate on the Traditional Codeshare variable suggests that this process has not achieved parity with pure online products [Gayle (2013)].

The Virtual Codeshare dummy variable has a negative coefficient estimate as well. This result suggests that passengers perceive virtual codeshare products as inferior substitutes to pure online products. For the itineraries that include virtual segments, first-class upgrades using accumulated frequent-flyer miles are not usually available [Ito and Lee (2007)]. This could explain why passengers perceive virtual codeshare products as inferior to pure online products.

Note that the coefficient estimates on both Percent Traditional for Airline and Percent Virtual for Airline are positive, suggesting that consumers tend to choose the airlines that have a higher percentage of their products being codeshared. This result is consistent with the argument that airline codesharing has a demand-increasing effect [Gayle and Brown (2012)]. The rationale for a demand-increasing effect is due to the fact that codeshare partners typically make their frequent-flyer programs reciprocal, thus allowing travelers holding frequent-flyer membership with one partner carrier to accumulate frequent-flyer points when flying with any partner carrier in the alliance. Thus the new opportunities for travelers to accumulate frequent-flyer points across partner carriers can increase demand for the codeshare partners’ products.

It is worth noting that the coefficient estimate on Percent Traditional for Airline is larger than the coefficient estimate on Percent Virtual for Airline, suggesting that traditional codesharing may have a larger impact on increasing demand relative to virtual codesharing. This result makes sense since traditional codesharing requires that partner carriers’ route networks are complementary, while virtual codesharing does not. In the situations where partner carriers’ route networks are complementary, and therefore
require passengers to fly on separate partner carriers’ planes to complete a trip, there are greater opportunities for passengers to accumulate frequent-flyer miles from the partner's reciprocal frequent-flyer programs. In other words, frequent-flyer membership with a partner carrier is likely more valuable to customers when partner carriers’ route networks are complementary. To the best of our knowledge, this formal evidence suggesting that traditional codesharing may have a larger impact on increasing demand relative to virtual codesharing has not been previously investigated in the literature. So this is a new result, which may also help explain some key results from the dynamic model.

The coefficient on \(\ln(S_j/g) \) is \(\delta \), measuring the correlation of consumers’ preferences for products offered for sale by the same airline. Our estimate of \(\delta \) is 0.067. Given that we nest products by airlines and \(\delta \) is statistically significant, this suggests that passengers’ choice behavior shows some amount of brand-loyalty to airlines. However, since the estimate of \(\delta \) is closer to zero than it is to one, then this brand-loyal behavior seems not very strong.

The demand model yields a mean own-price elasticity estimate of -1.62. As pointed out by Oum, Gillen and Noble (1986) and Brander and Zhang (1990), a reasonable range for own-price elasticity in the airline industry is from -1.2 to -2.0. Peters (2006) study of the airline industry yields own-price elasticity estimates ranging from -3.2 to -3.6. Berry and Jia (2010) find own-price elasticity estimates ranging from -1.89 to -2.10 in their year 2006 sample, while Gayle and Wu (2012) find own-price elasticity estimates ranging from -1.65 to -2.39 in their year 2010 sample. Therefore, we are satisfied that the elasticity estimates generated from our model are reasonable and consistent with evidence in the existing literature.

As revealed by equation (8), the demand parameter estimates in Table 6 can be combined with the short-run supply-side Nash equilibrium price-setting assumption to compute product markups. Overall, mean price is $166.35, while computed mean product markup is $109.03. We also use the demand estimates along with equations (8) and (9) to compute quarterly market-level variable profits by airline. As we stated previously in the data section of the paper, the original database, before any cleaning, is only a 10% random sample of air travel tickets sold. This implies that the magnitudes of our variable profit estimates are at most roughly 10% of actual variable profits. Variable profits are
measured in constant year 1999 dollars. Overall, an airline's mean quarterly market-level variable profit is $82,775.43, while the median is $31,492.71.

4.3 Estimation of Dynamic Model

The likelihood function for the dynamic model is given by,

$$ L(\theta, \gamma, \lambda) = \prod_{m=1}^M \prod_{i=1}^N \prod_{t=1}^{T_m} P(\mathbf{a}_{mt} | \bar{Z}_{imt}, \bar{e}_{imt}, \epsilon_{mt}^{\text{Trad}}, \epsilon_{mt}^{\text{Vir}}, \theta) f(\epsilon_{mt}^{\text{Trad}} | Z_{mt}, \gamma) f(\epsilon_{mt}^{\text{Vir}} | Z_{mt}, \lambda) $$

where $\mathbf{a}_{mt} = (a_{1mt}, a_{2mt}, ..., a_{Nmt})$ is the vector of market participation actions taken by airlines in period t. Note that the likelihood function is comprised of three parts. The first part, $P(\mathbf{a}_{mt} | \bar{Z}_{imt}, \bar{e}_{imt}, \epsilon_{mt}^{\text{Trad}}, \epsilon_{mt}^{\text{Vir}}, \theta)$ computes the conditional likelihood of observing the logit choice probabilities of airlines being active in markets across the sample during the time span of the data. To obtain the full unconditional likelihood, we multiply the conditional likelihood by the probabilities of observing specific values of $\epsilon_{mt}^{\text{Trad}}$ and $\epsilon_{mt}^{\text{Vir}}$. where $\epsilon_{mt}^{\text{Trad}} = \text{Percent}_\text{Trad}_{mt} - Z_{mt}\gamma$ and $\epsilon_{mt}^{\text{Vir}} = \text{Percent}_\text{Virtual}_{mt} - Z_{mt}\lambda$ based on equations (15) and (16). Since we assume that $\epsilon_{mt}^{\text{Trad}}$ and $\epsilon_{mt}^{\text{Vir}}$ are normally distributed random variables with zero means and standard deviations σ^{Trad} and σ^{Vir} respectively, then $f(\cdot)$ is the normal probability density function.

While joint estimation of the full set of parameters $(\theta, \gamma, \lambda)$ is desirable due to potential efficiency gains, such joint estimation is extremely computationally demanding in this dynamic model. Fortunately, a convenient feature of the likelihood function above is that each of the three vectors of parameters in $(\theta, \gamma, \lambda)$ is identified by separate parts of the likelihood function. Specifically, $P(\mathbf{a}_{mt} | \bar{Z}_{imt}, \bar{e}_{imt}, \epsilon_{mt}^{\text{Trad}}, \epsilon_{mt}^{\text{Vir}}, \theta)$ is the part that identifies parameters in vector θ, while $f(\epsilon_{mt}^{\text{Trad}} | Z_{mt}, \gamma)$ and $f(\epsilon_{mt}^{\text{Vir}} | Z_{mt}, \lambda)$ are the parts that identify parameter vectors γ and λ respectively. This implies that parameter vectors γ and λ can be separately estimated in a first step using likelihood functions $\prod_{m=1}^M \prod_{t=1}^{T_m} f(\epsilon_{mt}^{\text{Trad}} | Z_{mt}, \gamma)$ and $\prod_{m=1}^M \prod_{t=1}^{T_m} f(\epsilon_{mt}^{\text{Vir}} | Z_{mt}, \lambda)$ respectively. Given estimates $\hat{\gamma}$ and $\hat{\lambda}$, we can compute $f(\epsilon_{mt}^{\text{Trad}} | Z_{mt}, \hat{\gamma})$ and $f(\epsilon_{mt}^{\text{Vir}} | Z_{mt}, \hat{\lambda})$ and use them to construct the relevant parts of $L(\theta, \hat{\gamma}, \hat{\lambda})$ in order to estimate $\hat{\theta}$ in a second step.
Based on the discussion above, we use the following pseudo log likelihood function to estimate parameters in vector θ:

$$Q(\theta, P, \hat{\gamma}, \hat{\lambda}) = \sum_{m=1}^{M} \sum_{i=1}^{N} \sum_{t=1}^{T} \left\{ a_{imt} \ln \left[\psi (\tilde{Z}_{imt}^P \times \theta + \tilde{e}_{imt}^P) \right]
+ (1 - a_{imt}) \ln \left[\psi (-\tilde{Z}_{imt}^P \times \theta - \tilde{e}_{imt}^P) \right]
+ \ln \left[f (\epsilon_{mt}^{Trad} | Z_{mt}, \hat{\gamma}) \right]
+ \ln \left[f (\epsilon_{mt}^{Vert} | Z_{mt}, \hat{\lambda}) \right] \right\}$$

(24)

where $Q(\theta, P, \hat{\gamma}, \hat{\lambda})$ is called a “pseudo” log likelihood function because airlines’ conditional choice probabilities (CCPs) in $\psi(\cdot)$ are arbitrary and do not represent the equilibrium probabilities associated with θ, where θ is the vector of parameters in the fixed and entry cost functions previously specified in equations (13) and (14). Since the focus now is describing how θ is estimated, in what follows we drop $\hat{\gamma}$ and $\hat{\lambda}$ when discussing “pseudo” log likelihood function $Q(\cdot)$ only for notational convenience.

We begin by implementing the Pseudo Maximum Likelihood (PML) estimation procedure [Aguirregabiria and Ho (2012)]. The PML requires two steps. In step 1, we estimate relevant state transition equations. Appendix A describes transition rules used for state variables. In addition, nonparametric estimates of the choice probabilities P_0 are computed in step 1. These nonparametric probability estimates, along with state variables and estimated state transition probabilities, are used to compute $\tilde{Z}_{imt}^P_0$ and $\tilde{e}_{imt}^P_0$ as described in Appendix B. Using $\tilde{Z}_{imt}^P_0$ and $\tilde{e}_{imt}^P_0$, we are able to construct the pseudo log likelihood function, $Q(\theta, P_0)$. In step 2 of the PML estimation algorithm, the vector of parameters $\hat{\theta}_{PML}$ is estimated by:

$$\hat{\theta}_{PML} = \arg \max_\theta Q(\theta, P_0)$$

(25)

This PML algorithm is simple and does not require solving for an equilibrium in the dynamic game, and thus substantially reduces computational burden. However, the two-step pseudo maximum likelihood estimator $\hat{\theta}_{PML}$ can have a large finite sample bias [Aguirregabiria and Mira (2007)]. To achieve consistency of the parameter estimates, we follow Aguirregabiria and Mira (2002, 2007) and use as a starting point the PML parameter estimates along with the non-parametric estimates of the choice probabilities to
implement the Nested Pseudo Likelihood (NPL) estimation algorithm. We describe the NPL estimation algorithm in Appendix C.14

Results from first-stage estimation of parameter vectors γ and λ

Table 7 reports the estimation results for first-stage estimation of parameter vectors γ and λ. The results suggest that more concentrated airline presence at the market endpoints (measured by variable \textit{Lag HHI of Presence}), and longer distance between market endpoints (measured by variable \textit{Nonstop Flight Distance}) seem to incentivize relatively higher levels of traditional codesharing, but lower levels of virtual codesharing. At a minimum we can infer from these results that airlines' choice of what type of codesharing to employ in a market depends in part on certain market characteristics. Last, results of F-tests shown in the table suggest that all regressors as a group do explain variations in Percent_Trad_{mt} and $\text{Percent_Virtual}_{mt}$.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient Estimates (γ)</th>
<th>Standard Error</th>
<th>Coefficient Estimates (λ)</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP</td>
<td>-2.84E-08</td>
<td>2.32E-07</td>
<td>1.37E-07</td>
<td>2.35E-07</td>
</tr>
<tr>
<td>Nonstop flight distance</td>
<td>0.0016***</td>
<td>7.68E-05</td>
<td>-0.0012***</td>
<td>7.79E-05</td>
</tr>
<tr>
<td>Lag HHI of Presence</td>
<td>0.9831**</td>
<td>0.4001</td>
<td>-3.6714***</td>
<td>0.4056</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.5868***</td>
<td>0.4384</td>
<td>2.6997***</td>
<td>0.4444</td>
</tr>
</tbody>
</table>

Origin fixed effects | YES | YES |
Destination fixed effects | YES | YES |
Quarter fixed effects | YES | YES |
R-squared | 0.2421 | 0.2943 |
F-test | 29.60 | Prob>F = 0.000 | 38.63 | Prob>F = 0.000 |

*** indicates statistical significance at 1%
** indicates statistical significance at 5%
Equations are estimated using ordinary least squares.

14 While the demand model is estimated using all three years in the data set (2005, 2006 and 2007), due to significant computational burden, we find that the dynamic entry/exit model can only feasibly be estimated using, at most, four quarters of the data. We only use data in year 2005 when estimating the dynamic entry/exit model. Even with just four quarters of data, the computer code for the dynamic entry/exit model took more than seven days of continuous running before convergence is achieved.
4.4 Results from the dynamic model

Table 8 reports estimates of parameters in the fixed and entry cost functions from the dynamic model. The quarterly discount factor, β, is fixed at 0.99 (that implies an annual discount factor of 0.96). All the estimated fixed and entry cost parameters are measured in ten thousands of annual 1999 dollars.

First, point estimates of parameters in the fixed cost function are unreasonably small and imprecisely estimated. As such, we cannot draw reliable inferences about the size of fixed cost. Fortunately, based on the objectives of our study we are most interested in parameter estimates in the entry cost function, which is where we now focus the remainder of the discussion.

Based on our Nash equilibrium price-setting game previously discussed, the median quarterly variable profit for an airline in a directional origin-destination market is estimated to be $31,492.71. Estimates from Table 8 show that the average estimated entry cost is approximately $30,574, which is approximately 97 percent of variable profit. The decision of market entry is forward-looking, and our estimates suggest that it will take an airline slightly less than one quarter of variable profit to recoup the one-time sunk entry cost investment. Of course, an airline typically needs to use a portion of its variable profit to pay for recurrent fixed expenses that, in part, may be related to its airport operations – e.g. labor cost of ground crew at airport. Therefore, it is likely to take more than one quarter of variable profits to recoup the one-time sunk entry cost investment.

However, it is notable from the estimates that mean entry cost differs by the carrier categories considered. Southwest has the highest mean market entry cost followed by legacy carriers and other low-cost-carriers, $33,498, $30,755 and $27,468 respectively. Furthermore, the pairwise difference between any two of these three mean market entry costs is statistically significant at conventional levels of statistical significance. Even though Southwest has the highest mean market entry cost, estimates from our short-run supply model reveal that it also has a relatively high median quarterly market-level variable profit of $61,490.78. So based on Southwest’s relatively high variable profit, it will only take Southwest a minimum of 0.54 of a quarter (approximately 49 days) of variable profit to recoup it’s one-time sunk entry cost.
investment. In contrast, other low-cost-carriers have the lowest mean market entry cost, but they also have relatively low variable profit, a median $35,976.57. So on average it takes other low-cost-carriers 0.76 of a quarter (approximately 69 days), which is longer than what it takes Southwest, of variable profits to recoup their one-time sunk entry cost investment.

“Size of Presence at market endpoints” in the entry cost function is variable \(\text{Pres}_{\text{int}} \) in equation (14). The estimated entry cost coefficient on “Size of Presence at market endpoints” is negative and statistically significant at conventional levels of statistical significance, suggesting that an airline’s market entry cost decreases with the size of the airline’s presence at the endpoint cities of the market. In other words, larger endpoint city presence makes it easier for the airline to actually start servicing the route. This result is consistent with how the literature believes airline markets work [see Berry (1992); Goolsbee and Syverson (2008); Gayle and Wu (2013) among others].

<table>
<thead>
<tr>
<th>Table 8</th>
<th>Estimates of Parameters in Fixed and Entry Cost Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Parameter Estimates ((\theta)) (In ten thousand $)</td>
</tr>
<tr>
<td>Fixed cost (quarterly):</td>
<td></td>
</tr>
<tr>
<td>Mean fixed cost</td>
<td>1.9067E-09</td>
</tr>
<tr>
<td>Size of Presence at market endpoints</td>
<td>-4.5820E-14</td>
</tr>
<tr>
<td>Entry costs:</td>
<td></td>
</tr>
<tr>
<td>Mean entry cost for Legacy carriers</td>
<td>3.0755***</td>
</tr>
<tr>
<td>Mean entry cost for Southwest</td>
<td>3.3498***</td>
</tr>
<tr>
<td>Mean entry cost for Other LCCs</td>
<td>2.7468***</td>
</tr>
<tr>
<td>Size of Presence at market endpoints</td>
<td>-0.0072***</td>
</tr>
<tr>
<td>Traditional Codesharing</td>
<td>-0.0197***</td>
</tr>
<tr>
<td>Virtual Codesharing</td>
<td>-0.0042**</td>
</tr>
<tr>
<td>Traditional Codesharing × Southwest</td>
<td>0.0295***</td>
</tr>
<tr>
<td>Virtual Codesharing × Southwest</td>
<td>0.0069</td>
</tr>
<tr>
<td>Traditional Codesharing × Other LCCs</td>
<td>0.0090</td>
</tr>
<tr>
<td>Virtual Codesharing × Other LCCs</td>
<td>-0.0058</td>
</tr>
</tbody>
</table>

*** indicates statistical significance at 1%

** indicates statistical significance at 5%
The coefficient estimates on traditional and virtual codesharing variables are negative and statistically significant. Based on our previous discussion of the interpretation of parameters in the entry cost function (equation (14)), the coefficients on these two codeshare variables essentially capture the influence of codesharing on the market entry cost of potential entrants that are legacy carriers. Therefore, these coefficient estimates suggest that an increase in the extent of codesharing by incumbent carriers in a market reduces the market entry cost of potential entrants that are legacy carriers.

Recall that our descriptive statistics in Table 3 show that: (1) the vast majority of codeshare products are provided by legacy carriers; and (2) almost all of each legacy carrier’s codeshare products are codeshared with other legacy carriers. Therefore, the econometric evidence in Table 8 suggesting that more codesharing in a market makes it less costly for potential entrant legacy carriers to enter the market may in part be driven by the Chen and Ross (2000) argument, which is that incumbents may offer to share their facility (in our context, predominantly airplane seats owned by legacy carriers) with some potential entrants (apparently other legacy carriers) in order to discourage the potential entrant from entering on a larger, and more competitive, scale by exclusively using its own plane on the full route. In other words, entry may be encouraged, as reflected by the lower entry cost, in a way that limits the scale of entry.

A key result is that the coefficient estimate on the interaction variable between traditional codesharing and Southwest is positive and statistically significant, while the coefficient estimate on the interaction variable between virtual codesharing and Southwest is not statistically significant. These coefficient estimates suggest that traditional codesharing between incumbent carriers raises Southwest’s entry cost to the relevant market, relative to the fall in entry cost of potential entrant legacy carriers, but virtual codesharing does not differentially affect Southwest’ market entry cost relative to potential entrant legacy carriers. In other words, more traditional codesharing between incumbent carriers in a market puts Southwest at a relative disadvantage to enter the market compared to potential entrant legacy carriers.
The coefficient estimates on the interactions between *Other low-cost-carriers* and codeshare variables are not statistically significant at conventional levels of statistical significance. In other words, in terms of dollar amount changes, neither type of codesharing differentially affect *Other low-cost-carriers* market entry cost, relative to the fall in entry cost of potential entrant legacy carriers. We argue above that a possible reason why potential entrant legacy carriers find it less costly to enter markets with more codesharing is due to the fact that the incumbents that codeshare are typically legacy carriers, and legacy carriers typically codeshare with other legacy carriers. So what is the rationale for the econometric result that potential entrants that are other low-cost carriers do not find it any more difficult than potential entrant legacy carriers to enter a market with higher levels of codesharing? Perhaps a reason for this result is that a large set of consumers served by other low-cost carriers does not have significant overlap with the set of consumers served by legacy carriers, and therefore the two carrier types only weakly compete with each other. Brueckner, Lee and Singer (2012) provide evidence that supports this argument. Specifically, they find that incumbent legacy carriers do not cut fares in response to potential competition from other low-cost carriers, but cut fares by 8% in response to potential competition from Southwest.

A useful feature of the structural econometric model is that the model allows us to monetize the extent to which codesharing by market incumbent carriers influences market entry barriers faced by potential entrants. Parameter estimates in the entry cost function suggest that each percentage point increase in traditional codeshare products offered by incumbents in a market raises market entry cost for Southwest by 0.3% \((= \frac{295-197}{33,498} \times 100)\). In contrast, each percentage point increase in traditional codeshare products offered by incumbents in a market reduces market entry cost by 0.6% \((= \frac{197}{30,755} \times 100)\) for potential entrant legacy carriers, and by 0.7% \((= \frac{197}{27,468} \times 100)\) for potential entrants that are “other” low-cost carriers.

Summary of key findings and discussion

In summary, based on coefficient estimates in the entry cost function, we can conclude that more traditional codesharing between incumbent carriers in a market puts
Southwest at a relative disadvantage to enter the market compared to all other potential entrants (legacy carriers and other low-cost carriers). We interpret this result as suggesting that traditional codesharing has a relative market entry deterrent effect on Southwest. Furthermore, the results suggest that virtual codesharing does not have a market entry deterrent effect.

Codeshare partner carriers typically make their frequent-flyer programs reciprocal. In situations where partner carriers’ route networks are complementary, and therefore require passengers to fly on separate partner carriers’ planes to complete a trip, there are greater opportunities for passengers to accumulate frequent-flyer miles from the partner's reciprocal frequent-flyer programs. In other words, frequent-flyer membership with a partner carrier is likely more valuable to customers when partner carriers’ networks are complementary. This suggests that market incumbents can more effectively increase their loyal customer base with traditional codesharing than they can via virtual codesharing, since traditional codesharing requires travel across complementary partner carriers’ networks, while virtual codesharing requires air travel on a single carriers’ network. The previously discussed demand results support this argument, since relevant demand coefficient estimates suggest that traditional codesharing is likely more demand-increasing for an airline relative to virtual codesharing.

An increase in incumbents’ loyal customer base makes it more difficult for a new entrant to amass a sufficiently large customer base to make entry profitable. Therefore, the empirical result from our entry cost estimates suggesting that traditional codesharing between incumbents is entry deterring, but virtual codesharing is not, is quite reasonable and consistent with the arguments above and supported by our demand-side results on codesharing. Note also that Southwest’s relatively higher market entry cost may simply be reflecting the increased difficulty it will face to amass a sufficiently larger customer base in these codeshare markets.

5. Concluding Remarks

The main objective of our paper is to use a structural econometric model to investigate: (1) whether codesharing between airlines in domestic air travel markets, a form of strategic alliance, has a deterrent effect on the entry of potential competitors; (2)
whether there is a particular type of codesharing among alliance partners that is most effective at deterring entry; and (3) whether there is a particular type of airline that seems to be more deterred via such type of codesharing between alliance partners. One advantage of using a structural econometric model is that we are able to quantify, in monetary terms, possible market entry barriers associated with codesharing.

We find that more traditional codesharing between incumbent carriers in a market puts Southwest at a relative disadvantage to enter the market compared to all other potential entrants (legacy carriers and other low-cost carriers). Specifically, each percentage point increase in traditional codeshare products offered by incumbents in a market raises market entry cost for Southwest by 0.3%, but reduces market entry cost by 0.6% and 0.7% for legacy and “other” low-cost carriers respectively. Therefore, traditional codesharing by market incumbent carriers has a relative market entry deterrent effect on Southwest. Furthermore, there is no evidence that virtual codesharing has a market entry deterrent effect.

We link the market entry deterrent effects inferred from our entry cost estimates to findings from our demand estimates. Estimates from our demand model suggest that incumbents’ traditional codesharing has a larger demand-increasing effect for their products compared to virtual codesharing. Since the demand-side evidence is consistent with the argument that traditional codesharing better serves to expand the loyal customer base of market incumbents, then with more traditional codesharing by incumbents, a potential entrant will find it more costly (higher market entry cost) to build its own customer base upon entry, making entry less profitable in these high traditional codeshare markets. We argue that this entry deterrent effect is binding for Southwest but not for others due to evidence that the vast majority of codesharing is done between legacy carriers, and competition between Southwest and legacy carriers is stronger than competition between other low-cost carriers and legacy carriers. For example, Brueckner, Lee and Singer (2012) provide evidence that incumbent legacy carriers do not cut fares in response to potential competition from other low-cost carriers, but cut fares by 8% in response to potential competition from Southwest.

We also find that an airline’s market entry cost decreases with the size of the airline’s presence at the endpoint cities of the market. This finding is consistent with
findings in Aguirregabiria and Ho (2012), and may be due to economies of scale and scope by concentrating most operations in a hub airport.

The focus of our study is on U.S. domestic air travel markets, however future work may investigate whether results similar to ours exist for codesharing in international air travel markets.

Appendix A: Transition Rules for State Variables

The state variables we observe are: \(\{s_{im,t}, R_{im,t}^{*}, \text{Pres}_{im,t}, \text{Percent}_\text{Trad}_{mt}, \text{Percent}_\text{Virtual}_{mt}\} \). Transition rules for state variables are as follows:

\[
\begin{align*}
 s_{im,t+1} &= a_{it} \quad (A1) \\
 R_{im,t+1}^{*} &= a_{im}^{R}(a_{0}^{R} + a_{1}^{R}R_{im,t}^{*} + \zeta_{im,t}^{R}) \quad (A2) \\
 \text{Pres}_{im,t+1} &= a_{0}^{\text{Pres}} + a_{1}^{\text{Pres}}\text{Pres}_{im,t} + \zeta_{im,t}^{\text{Pres}} \quad (A3) \\
 \text{Percent}_\text{Trad}_{mt+1} &= a_{0}^{\text{Percent}_\text{Trad}} + \\
 &\quad a_{1}^{\text{Percent}_\text{Trad}}\text{Percent}_\text{Trad}_{mt} + \zeta_{mt}^{\text{Percent}_\text{Trad}} \quad (A4) \\
 \text{Percent}_\text{Virtual}_{mt+1} &= a_{0}^{\text{Percent}_\text{Virtual}} + \\
 &\quad a_{1}^{\text{Percent}_\text{Virtual}}\text{Percent}_\text{Virtual}_{mt} + \zeta_{mt}^{\text{Percent}_\text{Virtual}} \quad (A5)
\end{align*}
\]

where \(\zeta_{im,t}^{R}, \zeta_{im,t}^{\text{Pres}}, \zeta_{mt}^{\text{Percent}_\text{Trad}}, \) and \(\zeta_{mt}^{\text{Percent}_\text{Virtual}} \) are assumed to be normally distributed.

The joint transition probabilities of the state variables are determined by:

\[
\begin{align*}
 F_{i}^{\sigma}(y_{t+1}|a_{it},y_{t}) &= \left\{ \begin{array}{l}
 \{1\{S_{i,t+1} = 1\} \ast \text{Pr}_{R} \ast \text{Pr}_{\text{Pres}} \ast \text{Pr}_{\text{Percent}_\text{Trad}} \ast \text{Pr}_{\text{Percent}_\text{Virtual}} \ast \text{Pr}_{\text{comp}} \\
 \{1\{S_{i,t+1} = 0\} \ast \text{Pr}_{R}^{'} \ast \text{Pr}_{\text{Pres}} \ast \text{Pr}_{\text{Percent}_\text{Trad}} \ast \text{Pr}_{\text{Percent}_\text{Virtual}} \ast \text{Pr}_{\text{comp}}
 \end{array} \right. \quad (A6)
\end{align*}
\]

where

\[
\begin{align*}
 \text{Pr}_{R} &= F_{R}(R_{it+1}|R_{it}) \ast \prod_{j \neq i} F_{R}(R_{jt+1}|R_{jt}) \quad (A7) \\
 \text{Pr}_{\text{Pres}} &= F_{\text{Pres}}(\text{Pres}_{it+1}|\text{Pres}_{it}) \ast \prod_{j \neq i} F_{\text{Pres}}(\text{Pres}_{jt+1}|\text{Pres}_{jt}) \quad (A8) \\
 \text{Pr}_{\text{Percent}_\text{Trad}} &= F_{\text{Percent}_\text{Trad}}(\text{Percent}_\text{Trad}_{t+1}|\text{Percent}_\text{Trad}_{t}) \quad (A9) \\
 \text{Pr}_{\text{Percent}_\text{Virtual}} &= F_{\text{Percent}_\text{Virtual}}(\text{Percent}_\text{Virtual}_{t+1}|\text{Percent}_\text{Virtual}_{t}) \quad (A10)
\end{align*}
\]
\[
\Pr_{R} = 1\{R_{i,t+1} = 0\} \cdot \prod_{j \neq i} F_R(R_{j,t+1}|R_{j,t}) \tag{A11}
\]

\[
\Pr_{\text{comp}} = \prod_{j \neq i} Pr(s_{jt+1} = \sigma_j(y_{jt}, e_{jt})|y_{jt}) \tag{A12}
\]

Appendix B: Representation of Markov Perfect Equilibrium (MPE) using Conditional Choice Probabilities (CCPs)

Recall that expected one-period profit function, \(\Pi_{i \text{mt}}(a_{it}, y_t) \), is specified as:

\[
\Pi_{i \text{mt}}(a_{it}, y_t) = R_{i \text{mt}}^* - a_{i \text{mt}}(FC_i + (1 - s_{i \text{mt}})EC_i), \tag{B1}
\]

where parametric specifications for \(FC_i \) and \(EC_i \) were previously given in equations (13) and (14). Based on equation (B1):

\[
\Pi_{i \text{mt}}(0, y_t) = R_{i \text{mt}}^* \tag{B2}
\]

and

\[
\Pi_{i \text{mt}}(1, y_t) = R_{i \text{mt}}^* - FC_i - (1 - s_{i \text{mt}})EC_i \tag{B3}
\]

Let

\[
z_{i \text{mt}}(0, y_t) = \{R_{i \text{mt}}^*, 0,0,0,0,0,0,0\} \tag{B4}
\]

and

\[
z_{i \text{mt}}(1, y_t) = \{R_{i \text{mt}}^*, -1, -\text{pres}_{i \text{mt}}, -1, - (1 - s_{i \text{mt}})\text{pres}_{i \text{mt}}, -(1 - s_{i \text{mt}})\text{Percent}_\text{Trad}_{\text{mt}}, -(1 - s_{i \text{mt}})\text{Percent}_\text{Virtual}_{\text{mt}} \times \text{Southwest}, -(1 - s_{i \text{mt}})\text{Percent}_\text{Virtual}_{\text{mt}} \times \text{Southwest}, -(1 - s_{i \text{mt}})\text{Percent}_\text{Trad}_{\text{mt}} \times \text{Other}_lcc, -(1 - s_{i \text{mt}})\text{Percent}_\text{Virtual}_{\text{mt}} \times \text{Other}_lcc \} \tag{B5}
\]

and

\[
\theta = \{1, \theta_{0}^{\text{EC}}, \theta_{1}^{\text{EC}}, \theta_{0}^{\text{EC}}, \theta_{1}^{\text{EC}}, \theta_{2}^{\text{EC}}, \theta_{3}^{\text{EC}}, \theta_{4}^{\text{EC}}, \theta_{5}^{\text{EC}}, \theta_{6}^{\text{EC}}, \theta_{7}^{\text{EC}} \} \tag{B6}
\]

Therefore, we can re-write:

\[
\Pi_{i \text{mt}}(0, y_t) = z_{i \text{mt}}(0, y_t) \times \theta \tag{B7}
\]

and

\[
\Pi_{i \text{mt}}(1, y_t) = z_{i \text{mt}}(1, y_t) \times \theta \tag{B8}
\]

As discussed in Aguirregabiria and Ho (2012), the MPE can be represented as a vector of conditional choice probabilities (CCPs), \(P \). \(P = \{P_{i}(y)\}: \text{for every firm and state } (i, y)\) that solves fixed point problem \(P = \psi(P, \theta) \) is a vector of best response mapping:
\[
\{\psi \left(\frac{\tilde{Z}_{i}^{p}(y)}{\sigma_{e}} + \tilde{e}_{i}^{p}(y) \right) \}: \text{for every firm and state } (i, y) \}
\] \hspace{1cm} (B9)

where in our study \(\psi(\cdot)\) is the CDF of the type 1 extreme value distribution, and

\[
\tilde{Z}_{i}^{p}(y) = Z_{i}(1, y) - Z_{i}(0, y) + \beta [F_{i,y}^{P}(1) - F_{i,y}^{P}(0)] \times w_{z,i},
\] \hspace{1cm} (B10)

\[
\tilde{e}_{i}^{p}(y) = \beta [F_{i,y}^{P}(1) - F_{i,y}^{P}(0)] \times w_{e,i},
\] \hspace{1cm} (B11)

\[
w_{z,i}^{P} = (1 - \beta \ast \overline{F}_{i,y}^{P})^{-1} \times \{P_{i}(y) \ast Z_{i}(1, y) + [1 - P_{i}(y)] \ast Z_{i}(0, y)\},
\] \hspace{1cm} (B12)

\[
w_{e,i}^{P} = (1 - \beta \ast \overline{F}_{i,y}^{P})^{-1} \times \{P_{i}(y) \ast e_{i}^{P}\}
\] \hspace{1cm} (B13)

and

\[
\overline{F}_{i,y}^{P} = [(P_{i}(y) \ast 1_{M}^{'} \ast F_{i,y}^{P}(1) + (1 - P_{i}(y)) \ast F_{i,y}^{P}(0)].
\] \hspace{1cm} (B14)

where \(F_{i,y}^{P}(0)\) and \(F_{i,y}^{P}(1)\) are state transition probability matrices for \(a_{it} = 0\) and \(a_{it} = 1\) respectively; \(w_{z,i}^{P}\) and \(w_{e,i}^{P}\) are vectors of valuations that depend on CCPs and transition probabilities, but not on the dynamic parameters being estimated. Since \(\epsilon_{imt}\) is assumed type 1 extreme value distributed, \(e_{i}^{P}\) is a function vector equal to \(e_{i}^{P} = \gamma - \ln(P_{i}(y))\) where \(\gamma = 0.5772\) is Euler’s constant.

Appendix C: Implementing the Nested Pseudo Likelihood (NPL) Estimator

Given the PML estimator, \(\hat{\theta}_{PML}\), and the initial nonparametric estimate of CCPs, \(\hat{P}_{0}\), we construct a new estimator of CCPs, \(\hat{P}_{1}\), using the best response CCPs equation \(\hat{P}_{1} = \psi(y, \hat{P}_{0}, \hat{\theta}_{PML})\). Then we redo the maximization of the pseudo likelihood function to obtain a new estimate of \(\theta\) using \(\hat{P}_{1}\), instead of \(\hat{P}_{0}\), in the pseudo log likelihood function, that is, we solve \(\hat{\theta}_{2} = \arg \max_{\theta} Q(\theta, \hat{P}_{1})\). The process is repeated \(K\) times, and the \(K\)th estimates of \(\theta\) and \(P\) are obtained by \(\hat{\theta}_{K} = \arg \max_{\theta} Q(\theta, \hat{P}_{K-1})\) and \(\hat{P}_{K} = \psi(y, \hat{P}_{K-1}, \hat{\theta}_{K})\) respectively. The algorithm is terminated on the \(K\)th iteration only if the CCP vector \(\hat{P}_{K}\) is “close” to \(\hat{P}_{K-1}\) based on a stipulated tolerance level. Based on this algorithm, an NPL fixed point is defined as a pair \((\hat{\theta}_{K}, \hat{P}_{K-1})\). Aguirregabiria and Mira (2002, 2007) argue that this NPL estimation algorithm can reduce significantly the finite sample bias of the two-step PML estimator.
References

Gayle, Philip G. and Chi-Yin Wu 2012. “Are Air Travel Markets Segmented Along the Lines of Nonstop versus Intermediate-stop(s) Products?” *Manuscript, Kansas State University*.

